УДК 616-002.2 https://doi.org/10.52420/umj.23.5.52

https://elibrary.ru/MWEWYN

Нарушения цитокинового статуса и их роль в патогенезе хронического абактериального простатита невоспалительной природы

Андрей Сергеевич Соловьёв¹, Магомед Исламович Азизов²[№], Дмитрий Николаевич Щедров¹,³, Сергей Алексеевич Жигалов¹, Христина Александровна Соколова¹, Игорь Сергеевич Шорманов¹

- 1 Ярославский государственный медицинский университет, Ярославль, Россия
- 2 Клиническая больница № 9, Ярославль, Россия
- ³ Областная детская клиническая больница, Ярославль, Россия

⊠ azizov.m.i@gmail.com

Аннотация

Актуальность. Несмотря на продолжительную историю изучения хронического абактериального простатита (ХАП) невоспалительной природы, это заболевание остается непонятным с точки зрения доказанных этиологических факторов и патогенетических механизмов. Последние исследования трактуют его как нозологию, в основе которой лежат нарушения гомеостаза на разных уровнях, с повреждающим воздействием, направленным в сторону простаты. Основная роль в патогенезе принадлежит цитокиновому асептическому воспалению и перекисному окислению липидов, происходящих в условиях скомпрометированной антиоксидантной защиты.

Цель исследования — изучить особенности цитокинового статуса при экспериментальном воспроизведении моделей ХАП невоспалительной природы.

Материалы и методы. Исследование выполнено на 100 особях самцов белых крыс, 25 из которых составили контрольную группу, а оставшиеся животные разделены на 3 равные группы для выполнения опытов по созданию различных моделей ХАП и системного хронического стресса. По окончании эксперимента произведен забор крови и удалена простата, из которой получен гомогенат. Субстраты использовали для определения уровней про- и противовоспалительных цитокинов.

Результаты. В изолированной модели ХАП категории IIIB выявлены нарушения цитокинового обмена не только в ткани предстательной железы (в большей степени), но и на системном уровне (в меньшей степени). Модель системного иммобилизационного стресса доказала его возможность запускать в ткани предстательной железы нарушения обмена цитокинов, характерные для ХАП IIIB. Наиболее тяжелые нарушения гомеостаза на системном и локальном уровнях наблюдались в серии опытов, в рамках которых моделировались как системный стресс, так и локальная модель ХАП.

Заключение. В патогенезе ХАП IIIВ одну из ключевых ролей играет цитокиновый дисбаланс. При этом системные и органные нарушения обмена цитокинов взаимодействуют между собой и при определенных обстоятельствах способны усугублять повреждающее действие друг друга.

Ключевые слова: хронический абактериальный простатит, патогенез, эксперимент, цитокины, оксидативный стресс, системный и локальный гомеостаз

Конфликт интересов. Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов.

Соответствие принципам этики. Исследования одобрены локальным этическим комитетом Ярославского государственного медицинского университета (протокол № 19 от 26 октября 2017 г.).

Для цитирования: Патогенетические особенности хронического абактериального простатита невоспалительной природы / А. С. Соловьёв, М. И. Азизов, Д. Н. Щедров [и др.] // Уральский медицинский журнал. 2024. Т. 23, № 5. С. 52–62. DOI: https://doi.org/10.52420/umj.23.5.52. EDN: https://elibrary.ru/MWEWYN.

Cytokine Status Disorders and Their Role in the Pathogenesis of Chronic Abacterial Prostatitis of Non-Inflammatory Nature

Andrey S. Solovyov¹, Magomed I. Azizov²⊠, Dmitry N. Shchedrov¹,³, Sergey A. Zhigalov¹, Christina A. Sokolova¹, Igor S. Shormanov¹

⊠ azizov. m.i@gmail.com

Abstract

Relevance. Chronic abacterial prostatitis (CAP) of a non-inflammatory nature remains a complex disease in terms of proven etiological factors and pathogenetic mechanisms. Recent studies define it as a nosology based on homeostasis disorders with damaging effects directed towards the prostate. Pathogenetically, this is cytokine aseptic inflammation and lipid peroxidation, which occurs under conditions of compromised antioxidant protection.

Objective — to study the cytokine status in the experimental reproduction of non-inflammatory CAP models.

Materials and methods. 100 male white rats were studied, 25 formed a control group, and the remaining ones were divided into 3 equal groups for experiments on creating various models of CAP and systemic chronic stress. At the end of the experiment, blood was taken and the prostate was removed to obtain a homogenate. The substrates were used to determine pro- and anti-inflammatory cytokines.

Results. In the isolated CAP model of category IIIB, cytokine disorders were detected in prostate tissue (to a greater extent), and at the systemic level (to a lesser extent). The model of systemic immobilization stress proved the possibility of triggering cytokine disorders in prostate tissue characteristic of CAP IIIB. Severe homeostasis disorders at the systemic and local levels were observed in experiments where both systemic stress and the local CAP model were modeled

Conclusion. Cytokine imbalance plays a key role in the pathogenesis of CAP IIIB. At the same time, systemic and organ cytokine disorders interact with each other and, under certain circumstances, aggravate the damaging effect of each other.

Keywords: chronic abacterial prostatitis, pathogenesis, experiment, cytokines, oxidative stress, systemic and local homeostasis

Conflicts of interest. The authors declare the absence of obvious or potential conflicts of interest.

Conformity with the principles of ethics. The studies were approved by the Local Ethics Committee of the Yaroslavl State Medical University (protocol No. 19 dated 26 October 2017).

For citation: Solovyov AS, Azizov MI, Shchedrov DN, Zhigalov SA, Sokolova CA, Shormanov IS. Cytokine status disorders and their role in the pathogenesis of chronic abacterial prostatitis of non-inflammatory nature. *Ural Medical Journal*. 2024;23(5):52–62. (In Russ.). DOI: https://doi.org/10.52420/umj.23.5.52. EDN: https://elibrary.ru/MWEWYN.

© Соловьёв А. С., Азизов М. И., Щедров Д. Н., Жигалов С. А., Соколова Х. А., Шорманов И. С., 2024 © Solovyov A. S., Azizov M. I., Shchedrov D. N., Zhiqalov S. A., Sokolova C. A., Shormanov I. S., 2024

Введение

Хронический простатит — одно из наиболее часто диагностируемых урологических заболеваний у мужчин независимо от возраста, которое может протекать в двух клини-ко-лабораторных вариантах: в виде инфекционного (бактериального) простатита, частота которого в структуре всех форм простатита не превышает 5–8%, и неинфекционного (абактериального) простатита (ХАП), встречающегося в 90% случаев. Последний, в свою

¹ Yaroslavl State Medical University, Yaroslavl, Russia

² Clinical Hospital No. 9, Yaroslavl, Russia

³ Regional Children's Clinical Hospital, Yaroslavl, Russia

очередь, может иметь воспалительную (ХАП категории IIIA) или невоспалительную (ХАП категории IIIB) природу [1–3].

Невоспалительная форма ХАП является наиболее сложным в диагностическом отношении вариантом последнего и в настоящее время рассматривается большинством исследователей как диагноз исключения [4, 5]. Не меньшие проблемы вызывают вопросы, касающиеся выбора способов лечения рассматриваемой патологии, которые к настоящему времени не регламентированы действующими клиническими рекомендациями [6].

Кроме того, несмотря на продолжительную историю изучения ХАП IIIB, сегодня эта нозология остается невыясненной с точки зрения доказанных этиологических факторов и патогенетических механизмов [7, 8].

Исследования последнего десятилетия трактуют невоспалительный вариант хронического простатита как нозологию, лежащую на границе ряда медицинских и биологических специальностей, в основе которой лежат множественные нарушения гомеостаза на разных уровнях, имеющие вектор повреждающего воздействия, направленный в сторону простаты [9]. Кроме того, появляется все больше работ (как клинического, так и экспериментального плана), доказывающих, что гомеостатические расстройства простатического и организменного уровней, лежащие в основе заболевания, могут взаимно отягощать друг друга [10–12]. Наиболее точно эта концепция отражена в теории Дж. К. Никеля (англ. J. C. Nickel), которая трактует заболевание как мультипричинную цепочку патологических процессов, которые инициируются любым агентом и приводят к возникновению простатического болевого синдрома [13].

Интегративная оценка результатов исследований российских и зарубежных авторов позволяет сделать вывод о том, что в патогенезе ХАП IIIВ основная роль принадлежит цитокиновому асептическому воспалению и перекисному окислению липидов, происходящим в условиях скомпрометированной антиоксидантной защиты на разных уровнях [14–16]. С точки зрения современной патофизиологии эти факторы являются частными механизмами более общего универсального патогенетического фактора — оксидативного стресса² [17].

Следует отметить, что нарушениям цитокинового и оксидативного балансов при ХАП IIIВ посвящено немало исследований, однако корреляции между системными и органными нарушениями этих составляющих гомеостаза и сегодня остаются малопонятными [18]. При этом нарушения обменных процессов в простате и организме в целом, приводящие к возникновению заболевания, определенно связаны между собой и способны изменять интенсивность друг друга [19]. Принимая во внимание концепцию мультипричинного каскада, при обследовании пациентов и назначении лечения этой формы хронического простатита возникает необходимость в применении системного подхода, учитывающего все звенья системного и органного патогенеза.

Цель работы — изучить особенности цитокинового статуса при экспериментальном воспроизведении моделей ХАП невоспалительной природы.

¹ Белоусов И. И. Диагностика и лечение невоспалительной формы хронического абактериального простатита: автореф. дис. . . . д-ра мед. наук. Ростов н/Д., 2014. 47 с. EDN: https://elibrary.ru/zpeqop; Кузнецкий Ю. Я. Синдром хронической тазовой боли при хроническом простатите — патогенез, диагностика и лечение: автореф. дис. . . . д-ра мед. наук. М., 2006. 42 с.

² Голубчиков В. А., Краевой К. А., Перепелица А. Х. Особенности иммунного статуса при хроническом простатите // Пленум правления Российского общества урологов. М., 1998. С. 173–174.

Материалы и методы

Исследование выполнено на 100 половозрелых особях самцов белых крыс массой тела 180–250 г. 25 особей составили контрольную группу, результаты исследования крови и препаратов простаты этих животных использованы для получения референсных значений. Остальные животные разделены на 3 группы по 25 особей, на которых выполнено три серии опытов.

Первая серия опытов выполнена на животных (группа 1), у которых в эксперименте создавали модель ХАП, формировавшегося в течение 3 месяцев. По окончании этого периода производили забор крови из каудальной вены, крыс выводили из эксперимента путем декапитации под внутрибрюшинным введением этаминала натрия (4 мг/100 г массы тела). Затем у животных удалялась простата, из которой получали гомогенат 1. Последний вместе с полученной ранее кровью использовали для последующих биохимических исследований. Целью настоящего этапа эксперимента явилось изучение особенностей локальных изменений в ткани предстательной железы при ХАП и возможностей локальной модели заболевания выступать в роли потенциального индуктора системных нарушений гомеостаза.

Во второй серии опытов у экспериментальных животных (группа 2) выполнялось лабораторное моделирование хронического системного стресса по методу иммобилизации в течение 1 месяца при интактной предстательной железе. В дальнейшем животные также выводились из эксперимента с забором периферической крови и ткани простаты. Целью второго этапа экспериментального исследования явилось изучение возможностей системной модели хронического стресса выступать в роли индуктора локальных нарушений гомеостаза, характерных для ХАП, в исходно неповрежденной предстательной железе.

Третья серия опытов выполнена на животных (группа 3), у которых сначала создавалась экспериментальная модель ХАП в течение 3 месяцев, а затем (следующий месяц) — модель хронического стресса. Спустя 4 месяца животные группы 3 также выводились из эксперимента с забором периферической крови и ткани простаты. Целью третьего этапа эксперимента явилось изучение возможных патогенетических взаимосвязей и взаимовлияний между локальными и системными нарушениями гомеостаза при ХАП.

Для создания лабораторной модели системного хронического стресса применяли методику моделирования иммобилизационного стресса по И. А. Коломейцевой (1988)².

Моделирование ХАП воспроизводилось по модели Б. В. Алёшина (1977) путем прошивания простаты лабораторной крысы шелковой лигатурой через надлонный доступ [20].

Цитокиновый статус оценивали с помощью определения уровней провоспалительного (интерлейкина 8, ИЛ-8) и противовоспалительного цитокина (интерлейкина 10, ИЛ-10) в плазме крови и гомогенате предстательной железы путем иммуноферментного анализа (ИФА). В настоящем исследовании применялись тест-системы фирмы BioSource (Бельгия).

Статистическую обработку данных проводили с использованием описательной и сравнительной статистики. Готовые результаты эксперимента заносились в персональный компьютер на базе Microsoft Excel 2007, а также Statistica 6.0. Для интерпретации межгрупповых различий показателей признаков с непрерывным распределением использовался t-критерий Стьюдента. Пограничный уровень значимости нулевой гипотезы (об отсутствии значимых межгрупповых различий или факторных влияний) был принят за 0,05. Средние

¹ Коржевский Д. Э., Гиляров А. В. Основы гистологической техники. СПб. : СпецЛит, 2010. 95 с. EDN: https://elibrary.ru/rttusb.

² Коломейцева И. А. Экспериментальные неврозы и их фармакологическая терапия. М.: Наука, 1988.

значения представлены в виде арифметического среднего (англ. Mean, M) и стандартного отклонения (англ. Standard Deviation) — M (SD).

Исследование выполнено в соответствии с этическими нормами обращения с животными, принятыми Европейской конвенцией по защите позвоночных животных, используемых для исследовательских и иных научных целей (англ. European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes), Федерацией европейских ассоциаций по науке о лабораторных животных (англ. Federation of European Laboratory Animal Science Associations) и Международным советом по науке о лабораторных животных (англ. International Council for Laboratory Animal Science; Страсбург, 1986). Исследования одобрены локальным этическим комитетом Ярославского государственного медицинского университета (протокол № 19 от 26 октября 2017 г.).

Результаты

Результаты определения показателей цитокинового статуса представлены в таблице.

Содержание про- и противовоспалительных цитокинов в крови и ткани простаты экспериментальных животных, М (SD)

Цитокины	Контроль (<i>n</i> = 25)	Группа 1 (n = 25)	Группа 2 (n = 25)	Группа 3 (n = 25)
Плазма крови, пг/мл				
ИЛ-8	-15,6 (1,1)*	-16,2 (1,3)**	-20,2 (2,2)*	-35,0 (6,2)*†
ИЛ-10	-203,3 (13,1)*	-206,8 (2,2)**	-237,3 (5,1)*†	-212,3 (4,2)*†
Ткань простаты, пг/мг				
ИЛ-8	-12,1 (1,7)*	-17,9 (2,3)*†	-19,5 (3,4)*†	-34,8 (6,5)*†
ИЛ-10	-22,7 (2,4)*	-26,4 (3,3)†	-29,6 (4,7)*†	-16,7 (1,4)*†

Примечания. * различия достоверны при сравнении с контролем (p < 0.05). † различия достоверны при сравнении в исследуемых группах (p < 0.05).

Анализ полученных данных демонстрирует, что уровень цитокинов в группах претерпевал существенные изменения, но при этом наблюдались существенные различия динамики про- и противовоспалительных цитокинов как в простате, так и в крови.

У животных группы 1 наиболее выраженные достоверные изменения цитокинового баланса происходили непосредственно в ткани предстательной железы (p < 0.05), при этом изменения системного обмена цитокинов достоверно не отличались от тех же показателей в контроле (p > 0.05), но были менее выраженными, чем в группах 2 и 3 (p < 0.05).

У животных группы 2 (в модели хронического стресса) зафиксирован достоверный подъем в крови показателей провоспалительного ИЛ-8 на 28,5 % и противовоспалительного ИЛ-10 на 15,9 % в сравнении с контролем (p < 0,05), что явилось отражением сбалансированной адаптационно-приспособительной реакции стресс-индуцированного системного асептического воспаления цитокинового генеза. Этот подъем показателей ИЛ-8 и ИЛ-10 в рассматриваемой группе животных с первично здоровой предстательной железой, носило компенсированный физиологический характер, т. к. одновременно с повышением уровня провоспалительных цитокинов происходило гармоничное увеличение уровня противовоспалительных цитокинов в плазме крови без нарушений системного цитокинового баланса.

При этом стресс-индуцированное системное хроническое асептическое воспаление закономерно развивалось и у животных группы 3 с предварительно созданной моделью ХАП,

но динамика плазменных уровней цитокинов у них отличалась от этого показателя как у животных групп 1 и 2, так и группы контроля. Различия заключались в том, что хронический стресс у животных группы 3 вызывал более значимое повышение уровня ИЛ-8 в плазме крови, чем в группах 1 и 2 (p < 0.05). В результате увеличение в крови животных группы 3 уровня провоспалительного ИЛ-8 по сравнению с животными группы 2 составило 77.0 %, контролем — 127.0 % (или в 2.2 раза) (p < 0.05). Таким образом, хроническое асептическое воспаление, обусловленное хроническим стрессом, у животных с моделью длительно существующего хронического простатита носило чрезмерный характер. Подобная гиперергия является результатом того, что хроническое воспаление в предстательной железе способно инициировать системную воспалительную реакцию.

Показатель противовоспалительного ИЛ-10 в плазме крови крыс группы 3 в сравнении с группой контроля был выше только на 5,7%, относительно группы 2 — понижался на 1,3% (p < 0,05), что говорит о функциональной недостаточности системного противовоспалительного звена системы цитокинов при ХАП.

Одновременно в изучаемых моделях выявлялись различной степени выраженности и направленности локальные нарушения обмена цитокинов, причем в широком диапазоне колебаний их абсолютных значений. Изучение динамики показателей внутрипростатической концентрации цитокинов позволило выявить следующие особенности.

В ткани простаты наименее выраженные нарушения обмена цитокинов выявлялись у животных группы 1. В группе 2 сбалансированное физиологически оправданное усиление активности системных про- и противовоспалительных реакций на фоне хронического стресса сопровождалось практически такими же сбалансированными изменениями обмена цитокинов в ткани предстательной железы: от исходного показателя группы контроля уровень ИЛ-8 повышался на $64,7\,\%$, ИЛ- $10\,$ — на $31,0\,\%$ (p<0,05). В противоположность этому у животных группы 3 в предстательной железе выявлялись признаки тяжелых нарушений локального цитокинового баланса, которые проявлялись тем, что значения ИЛ- $8\,$ в ткани простаты лабораторных животных этой группы достоверно увеличился фактически в $2\,$ раза ($95\,\%$) по отношению к аналогичным показателям группы 1, почти в $3\,$ раза ($197\,\%$) — к контролю ($10\,$ 0,05). При этом уровень ИЛ- $10\,$ 0 в гомогенате простаты не только не вырастал, но даже достоверно уменьшался на $10\,$ 1,00 в гомогенате противовоспалительной цитокин-опосредованной системы защиты предстательной железы при длительно протекающем ХАП.

Обсуждение

Полученные нами данные о роли цитокинового дисбаланса согласуются с выводами, к которым пришли другие исследователи, о том, что в основе патогенеза многих воспалительных заболеваний, в т.ч. хронического простатита, лежит каскад патологических иммунных цитокин-опосредованных реакций. Известно, что предстательная железа способна вырабатывать активный иммунный ответ [21]. При этом нейтрофилы являются первыми иммунокомпетентными клетками, мигрирующими в очаг воспаления, а активированные мононуклеарные фагоциты являются основными клетками, секретирующими воспалительные эффекторные молекулы. Помимо нейтрофилов способностью секретировать цитокины обладают почти все типы клеток: лимфоциты, моноциты, макрофаги, эпителиальные клетки, эндотелиальные клетки, фибробласты, адипоциты и другие [22]. Важным фактором,

определяющим вектор развития заболевания, является баланс между про- и противовоспалительными цитокинами. Его соблюдение обеспечивает наиболее гибкие адаптационные реакции на системном и органном уровнях, а также течение воспалительного процесса в пределах физиологически необходимых границ, в противном случае системная или локальная воспалительные реакции становятся патологическими и склонными к длительному сохранению и прогрессированию ¹. Таким образом, персистенция и прогрессирование хронического асептического воспаления в ткани предстательной железы, выраженность альтеративно деструктивных и регенеративных изменений, а также степень манифестации его клинических проявлений во многом зависят от поддержания динамического баланса про- и противовоспалительных цитокинов [23]. Роль цитокинового дисбаланса в патогенезе хронического простатита категории IIIВ выяснена как на экспериментальных лабораторных моделях хронического простатита [24], так и в многочисленных клинических исследованиях, показавших, что воспаление в простате увеличивает продукцию различных провоспалительных цитокинов, которые, в свою очередь, вызывают экспрессию других активных молекул, главным образом хемокинов, привлекающих нейтрофилы в область воспаления [25, 26].

В связи с этим, по мнению некоторых авторов, снижение содержания противовоспалительных цитокинов в секрете предстательной железы на этом фоне может объяснить возникновение болей у больных хроническим простатитом [27]. У пациентов с рассматриваемым заболеванием категории IIIВ некоторыми исследователями обнаруживаются более высокие средние уровни провоспалительных цитокинов в секрете простаты по сравнению с контрольной группой здоровых мужчин [28]. Согласно Ж.-Г. Дуану и др. (англ. Z.-G. Duan et al.; 2005), при ХАП IIIВ имеет место выраженный дисбаланс про- и противовоспалительных цитокинов в секрете предстательной железы, который характеризовался достоверно более высоким уровнем провоспалительного ИЛ-8 на фоне более низкого уровня противовоспалительного ИЛ-10 по сравнению с контрольной группой [29].

По мнению Р. А. Садретдинова и др. (2015) уровень ИЛ-8 в эякуляте соматически здоровых мужчин был достоверно ниже, чем у больных хроническим бактериальным и абактериальным простатитом, но при бактериальной форме заболевания содержание ИЛ-8 было в 2,5 раза выше, чем при хроническом простатите категории ІІІ В. Уровень ИЛ-8 в крови больных с последним снижался в фазу ремиссии, но оставался статистически значимо выше, чем в группах соматически здоровых и больных бактериальным простатитом после лечения. Авторы предлагают определение ИЛ-8 в эякуляте как показатель активности воспалительного процесса в простате [30].

Похожие результаты иммунологических исследований получены в работах и других российских и зарубежных авторов [31–35]. Данные свидетельствуют о выраженном дисбалансе цитокинов в дериватах простаты у больных ХАП и том, что цитокин-опосредованные иммуновоспалительные реакции играют исключительно важную патогенетическую роль как в индукции, так и поддержании, а также потенциальном прогрессировании хронического асептического воспаления, представляющего ключевую патоморфологическую характеристику ХАП.

Выполненное нами экспериментальное исследование по моделированию ХАП позволило выявить двусторонние патогенетические связи между нарушениями гомеостаза систем-

¹ Ярилин А. А. Основы иммунологии : учебник. М. : Медицина, 1999. 608 с. URL: https://clck.ru/3CVzUy (дата обращения: 10.01.2024) ; Литвицкий П. Ф. Патофизиология : учебник. 2-е изд., испр. и доп. М. : ГЭОТАР-МЕД, 2003. Т. 1. 752 с. URL: https://clck.ru/3CVzak (дата обращения: 10.01.2024).

ного и органного уровней, имеющиеся при рассматриваемом заболевании. Моделирование только ХАП в группе 1 показало, что наряду с преимущественно локальными изменениями цитокинового баланса при нем закономерно развиваются аналогичные нарушения на системном уровне, выраженные в меньшей степени, чем локальные.

В экспериментальной модели системного стресса у животных с исходно интактной предстательной железой установлено, что под влиянием системного стресса в системном кровотоке и ткани предстательной железы закономерно развивались адаптационно-направленные реакции цитокинового характера как проявления физиологической адаптационной реактивности.

Эта же серия опытов позволила сделать еще два важных вывода. Здоровая предстательная железа характеризовалась высокой степенью природной устойчивости к стресс-индуцированным патологическим системным воздействиям, которые одновременно проявлялись и в ней, но протекали как физиологически необходимые процессы, направленные на поддержание необходимого предстательной железе метаболического гомеостаза.

Кроме того, при здоровой предстательной железе не наблюдались достоверно избыточные реакции цитокинового характера в системном кровотоке, которые следовало бы уже рассматривать как проявления не физиологического, а патологического окислительного стресса. Иными словами, при воздействии любого стрессорного фактора в отсутствие патологического процесса в органах и тканях, очевидно, до определенного времени не наблюдается известный феномен взаимного отягощения патологий. Подтверждением этого вывода стали результаты третьей серии опытов, в которой воздействию системного стресса подвергались животные с поврежденной простатой. Для комбинированной модели был характерен прогрессирующий дисбаланс протекающих прежде всего в предстательной железе цитокиновых реакций, которые функционировали на грани своего физиологического предела, предопределяя достоверное снижение природной резистентности предстательной железы, пораженной хроническим воспалительным процессом, к влияниям любого системного стресса.

Таким образом, наши исследования показали, что интактная предстательная железа даже в условиях системного окислительного стресса, индуцирующего системную цитокиновую воспалительную реакцию, имеет некоторый достаточный резерв системы локальной антицитокиновой защиты. Это позволяет ей адекватно реагировать на системные изменения баланса про- и противовоспалительных цитокинов и противостоять таким образом агрессии системного изменения гомеостаза.

Однако в модели длительно протекающего ХАП непосредственная связь между системными и локальными факторами стрессорной агрессии так отчетливо, как при ранних стадиях заболевания, уже не наблюдалась. В этих условиях асептический воспалительный процесс в предстательной железе становился автономным и практически не зависящим от влияния системных нарушений цитокинового баланса. Адекватность протекания локальных цитокиновых защитно-компенсаторных реакций в железе утрачивалась, ранее физиологические реакции уже приобретали характер патологических, деструктивно ориентированных, отражением которых стали выявленные нарушения локального цитокинового статуса, проявлявшиеся в достоверном подъеме показателя провоспалительного ИЛ-8 на фоне одновременного дефицита противовоспалительного ИЛ-10 в гомогенатах простаты (p < 0.05).

Заключение

Таким образом, в патогенезе ХАП невоспалительной природы одну из ключевых ролей играет цитокиновый дисбаланс. Под влиянием хронического стресса в системном кровотоке и ткани неповрежденной предстательной железы развиваются адаптационно направленные реакции цитокинового характера, нивелирующие последствия системного стресса, в отношении как системного гомеостаза, так и метаболизма предстательной железы. Последняя, пораженная хроническим воспалительным процессом, обладает сниженной резистентностью к влияниям любого системного стресса, что проявляется дисбалансом цитокиновых реакций, главным образом в предстательной железе и в меньшей степени на системном уровне. Исходя из вышеизложенного, лечение пациентов, страдающих невоспалительным вариантом ХАП, должно основываться на четком понимании сложности его патогенеза, принимая во внимание как системные, так и органные нарушения гомеостаза при рассматриваемой патологии.

Список источников | References

- 1. Kulchavenya EV, Shevchenko SYu, Cherednichenko AG. New possibilities of application of hyaluronidase in chronic prostatitis. *Urologiia*. 2020;(3):56–62. (In Russ.). DOI: https://doi.org/10.18565/urology.2020.3.56–62.
- 2. Tyuzikov IA. Interrelation of systemic factors in the pathogenesis of chronic pelvic pain syndrome in men. *Urologiia*. 2012;(6):48–51. (In Russ.). EDN: https://elibrary.ru/pivkel.
- 3. Nickel JC. Chronic prostatitis/chronic pelvic pain syndrome: It is time to change our management and research strategy. *BJU International*. 2020;125(4):479–480. DOI: https://doi.org/10.1111/bju.15036.
- 4. Strotsky AV. Chronic prostatitis: A "new" approach to an old problem? *Meditsinskie novosti*. 2006;(8):19–22. (In Russ.). Available from: https://clck.ru/3CVkBT [accessed 10 January 2024].
- 5. Alyaev YuG, Vinarov AZ, Pshikhachev AM, Varshavsky VA, Stoilov SV. Chronic abacterial prostatitis: Do we know everything? *Andrology and Genital Surgery*. 2010;11(3):90–94. (In Russ.). EDN: https://elibrary.ru/mwgpft.
- 6. Sivkov AV, Romikh VV, Zakharchenko AV. Category IIIB chronic prostatitis/chronic pelvic pain syndrome and sexual dysfunction. *Andrology and Genital Surgery*. 2015;16(4):18–26. (In Russ.). EDN: https://elibrary.ru/vkpnqj.
- 7. Cohen JM, Fagin AP, Hariton E, Niska JR, Pierce MW, Kuriyama A, et al. Therapeutic intervention for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS): A systematic review and meta-analysis. *PLoS One.* 2012;7(8):e41941. DOI: https://doi.org/10.1371/journal.pone.0041941.
- 8. Alyaev YuG, Rapoport LM, Tsarichenko DG, Demidko LJ. Diagnosis and treatment of prostate diseases. *Effective Pharmacotherapy*. 2011;(41):36–38. (In Russ.). EDN: https://elibrary.ru/sgidgn.
- 9. Tyuzikov IA. Chronic pelvic pain in men: Optimization of pathogenetic pharmacotherapy from the standpoint of an interdisciplinary approach. *RMJ*. 2016;24(23):1535–1541. (In Russ.). EDN: https://elibrary.ru/xrmamp.
- 10. Tyuzikov IA, Ivanov AP. Abacterial syndrome of chronic pelvic pain in men as a multidisciplinary problem. *Fundamental Research.* 2012;(1):121–124. (In Russ.). EDN: https://elibrary.ru/pazaut.
- 11. Tyuzikov IA. Interrelation of systemic factors in the pathogenesis of chronic pelvic pain syndrome in men. *Urologiia*. 2012;(6):48–51. (In Russ.). EDN: https://elibrary.ru/pivkel.
- 12. Dolgov AB, Popkov VM, Churakov AA. Chronic abacterial pro-statitis/chronic pelvic pain syndrome: A modern view on the aspects of pathogenesis. *Modern Problems of Science and Education*. 2016;(4):62. (In Russ.). EDN: https://elibrary.ru/wiqbvl.
- 13. Curtis Nickel J, Baranowski AP, Pontari M, Berger RE, Tripp DA. Management of men diagnosed with chronic prostatitis/chronic pelvic pain syndrome who have failed traditional management. *Reviews in Urology*. 2007;9(2):63–72. PMID: https://pubmed.gov/17592539.
- 14. Kulchavenya EV, Kholtobin DP, Shevchenko SYu, Potapov VV, Zulin VV. The frequency of chronic prostatitis in the structure of outpatient urological care. *Experimental and Clinical Urology*. 2015;(1):16–19. (In Russ.). EDN: https://elibrary.ru/udfiwv.
- 15. Konoplya AI, Shatokhin MN, Gavrilyuk VP. Immunological problems of chronic prostatitis. *Immunopathology, Allergology, Infectology.* 2015;(2):29–34. (In Russ.). EDN: https://elibrary.ru/vaoebj.

- 16. Breser ML, Salazar FC, Rivero VE, Motrich RD. Immunological mechanisms underlyng chronic pelvic pain and prostate inflammation in chronic pelvic pain syndrome. *Frontiers in Immunology*. 2017;8:898. DOI: https://doi.org/10.3389/fimmu.2017.00898.
- 17. Carmeli E, Coleman R, Reznick AZ. The biochemistry of aging muscle. *Experimental Gerontology*. 2002;37(4):477–489. DOI: https://doi.org/10.1016/s0531-5565(01)00220-0.
- 18. Dorofeev SD, Kudryavtsev YuV, Kudryavtseva LV. Immunohistochemical aspects of chronic abacterial prostatitis. *Effective Pharmacotherapy*. 2014;(2):26–38. (In Russ.). EDN: https://elibrary.ru/rwhiov.
- 19. Jang TL, Schaeffer AJ. The role of cytokines in prostatitis. World Journal of Urology. 2003;21(2):95–99. DOI: https://doi.org/10.1007/s00345-003-0335-2.
- 20. Aleshin BV, Bondarenko LA, Breslavskii AS, Vartapetov BA, Gladkova AI. Functional and structural changes in the adrenal cortex of rabbits with chronic prostatitis. *Bulletin of Experimental Biology and Medicine*. 1977;83(3):308–309. DOI: https://doi.org/10.1007/BF00799345.
- 21. McClinton S, Eremin O, Miller ID. Inflammatory infiltrate in prostatic hypherplasia Evidence of a host response to intraprostatic spermatozoa? *BJU International*. 1990;65(6):606–610. DOI: https://doi.org/10.1111/j.1464-410x.1990.tb14828.x.
- 22. Kovalchuk LV, Gankovskaya LV, Nikankina LV, Dolgina EN, Shcheglovitova ON. From autolymphokinotherapy to the controlled preparation of the cytokine complex Superlimf. *Allergy, Asthma and Clinical Immunology*. 2001;(6):28–33. (In Russ.).
- 23. Kramer G, Marberger M. Could inflammation be a key component in the progression of benign prostatic hyperplasia? *Current Opinion in Urology*. 2006;16(1):25–29. DOI: https://doi.org/10.1097/01.mou.0000193368.91823.1b.
- 24. Tsvetkov IS, Makarova OV, Mkhitarov VA. Experimental models of chronic prostatitis. *Clinical and Experimental Morphology*. 2013;(1):60–65. (In Russ.). EDN: https://elibrary.ru/pxwmvv.
- 25. Bostwick DG, De la Roza G, Dundore P, Corica FA, Iczkowski KA. Intraepithelial and stromal lymphocytes in the normal human prostate. *The Prostate*. 2003;55(3):187–193. DOI: https://doi.org/10.1002/pros.10224.
- 26. Hua VN, Schaeffer AJ. Acute and chronic prostatitis. *Medical Clinics of North America*. 2004;8(28):483–494. DOI: https://doi.org/10.1016/s0025-7125-(03)00169-x.
- 27. Shoskes DA, Albakri Q, Thomas K, Cook D. Cytokine polymorphisms in men with chronic prostatitis/chronic pelvic pain syndrome: Association with diagnosis and treatment response. *Journal of Urology*. 2002;168(1):331–335. DOI: https://doi.org/10.1016/S0022-5347(05)64916-6.
- 28. Alexander RB, Ponniah S, Hasday J, Hebel JR. Elevated levels of proinflammatory cytokines in the semen of patients with chronic prostatitis/chronic pelvic pain syndrome. *Urology*. 1998;5(52):744–749. DOI: https://doi.org/10.1016/s0090-4295(98)00390-2.
- 29. Duan ZG, Yang WM. Analysis of cytokines (IL-2, IL-8, IL-10) in the expressed prostatic secretions of chronic prostatitis. *Zhonghua Nan Ke Xue*. 2005;11(3):201–203. (In Chin.). PMID: https://pubmed.gov/15804113.
- 30. Sadretdinov RA, Polunin AA, Asfandiyarov FR. Analysis of the level of interleukin-8 in chronic prostatitis. *International Journal of Experimental Education*. 2015;(3–1):69–70. (In Russ.). EDN: https://elibrary.ru/tjdkhl.
- 31. Konoplya AI, Teodorovich OV, Shatokhin MN, Gavrilyuk VP, Mavrin MY. Chronic prostatitis, prostate adenoma and immunity: Disorders and correction. *Urologiia*. 2013;(4):99–103. (In Russ.). EDN: https://elibrary.ru/rioiwf.
- 32. Neymark BA, Neymark AI, Davydov AV, Klepikova II, Nozdrachev NA, Razdorskaya MV. The role of cytomedines in the treatment of patients with chronic prostatitis accompanied by disorders of spermatogenesis. *Urologiia*. 2015;(5):70–73. (In Russ.). DOI: https://elibrary.ru/uymtrh.
- 33. Razumov SV, Medvedev AA, Chirun NV, Sivkov AV, Oschepkov VN, Sinyukhin VN. The role of cytokines in the diapastics of chronic prostatitis. *Urologiia*. 2003; (6):25–28. (In Russ.). EDN: https://elibrary.ru/myzpwk.
- 34. Totolyan AA, Al-Shukri SH, Kozlov VV. Diagnostic significance of the determination of interleukin-8 in chronic prostatitis. *Urologiia*. 2001;(6):6–8.
- 35. Shatokhin MI, Teodorovich OV, Konoplya AI, Gavrilyuk VP, Mavrin MYu, Krasnov AV. Immunometabolic disorders in chronic bacterial prostatitis and their correction. *Urologiia*. 2011;(5):39–42. EDN: https://elibrary.ru/oklgvr.

Информация об авторах

Андрей Сергеевич Соловьёв — кандидат медицинских наук, доцент кафедры урологии с нефрологией, Ярославский государственный медицинский университет, Ярославль, Россия.

E-mail: a-s-soloviev89@yandex.ru

ORCID: https://orcid.org/0000-0001-5612-3227

Магомед Исламович Азизов — врач-уролог урологического отделения № 2, Клиническая больница № 9, Ярославль, Россия.

E-mail: azizov. m.i@gmail.com

ORCID: https://orcid.org/0000-0003-3700-5190

Дмитрий Николаевич Щедров — доктор медицинских наук, доцент кафедры урологии с нефрологией, Ярославский государственный медицинский университет, Ярославль, Россия; заведующий отделением урологии и андрологии, Областная детская клиническая больница, Ярославль, Россия.

E-mail: shedrov.dmitry@yandex.ru

ORCID: https://orcid.org/0000-0002-0686-0445

Сергей Алексеевич Жигалов — кандидат медицинских наук, доцент кафедры урологии с нефрологией, Ярославский государственный медицинский университет, Ярославль, Россия.

E-mail: sergey.zhigalow@gmail.com

ORCID: https://orcid.org/0000-0003-2464-572X

Христина Александровна Соколова — кандидат медицинских наук, доцент кафедры урологии с нефрологией, Ярославский государственный медицинский университет, Ярославль, Россия.

E-mail: manoylov@yandex.ru

ORCID: https://orcid.org/0000-0002-9772-7745

Игорь Сергеевич Шорманов — доктор медицинских наук, профессор, заведующий кафедрой урологии с нефрологией, Ярославский государственный медицинский университет, Ярославль, Россия.

E-mail: i-s-shormanov@yandex.ru

ORCID: https://orcid.org/0000-0002-2062-0421

Information about the authors

Andrey S. Solovyov — Candidate of Sciences (Medicine), Associate Professor of the Department of Urology and Nephrology, Yaroslavl State Medical University, Yaroslavl, Russia.

E-mail: a-s-soloviev89@yandex.ru

ORCID: https://orcid.org/0000-0001-5612-3227

 $\textbf{Magomed I. Azizov}^{\boxtimes} \ -- \ \text{Urologist of the Department of Urology No. 2, Clinical Hospital No. 9, Yaroslavl, Russia.}$

E-mail: azizov. m.i@gmail.com

ORCID: https://orcid.org/0000-0003-3700-5190

Dmitry N. Shchedrov — Doctor of Sciences (Medicine), Associate Professor of the Department of Urology and Nephrology, Yaroslavl State Medical University, Yaroslavl, Russia; Head of the Department of Urology and Andrology, Regional Children's Clinical Hospital, Yaroslavl, Russia.

E-mail: shedrov.dmitry@yandex.ru

ORCID: https://orcid.org/0000-0002-0686-0445

Sergey A. Zhigalov — Candidate of Sciences (Medicine), Associate Professor of the Department of Urology and Nephrology, Yaroslavl State Medical University, Yaroslavl, Russia.

E-mail: sergey.zhigalow@gmail.com

ORCID: https://orcid.org/0000-0003-2464-572X

Christina A. Sokolova — Candidate of Sciences (Medicine), Associate Professor of the Department of Urology and Nephrology, Yaroslavl State Medical University, Yaroslavl, Russia.

E-mail: manoylov@yandex.ru

ORCID: https://orcid.org/0000-0002-9772-7745

Igor S. Shormanov — Doctor of Sciences (Medicine), Professor, Head of the Department of Urology and Nephrology, Yaroslavl State Medical University, Yaroslavl, Russia.

E-mail: i-s-shormanov@yandex.ru

ORCID: https://orcid.org/0000-0002-2062-0421

Рукопись получена: 17 января 2024. Одобрена после рецензирования: 30 апреля 2024. Принята к публикации: 8 августа 2024.

Received: 17 January 2024. Revised: 30 April 2024. Accepted: 8 August 2024.