Эпидемиологическая характеристика норовирусной инфекции
https://doi.org/10.52420/2071-5943-2022-21-3-114-128
Аннотация
Введение. Норовирусы являются распространенной причиной гастроэнтерита и представляют угрозу для общественного здоровья, вызывая вспышки в медицинских организациях и организованных коллективах. Цель работы – систематизировать текущие данные об эпидемиологии норовирусной инфекции (НВИ) и биологических свойствах норовирусов в данном контексте. Материалы и методы. Проведен поиск научных статей по ключевому слову «norovirus» в базе данных Pubmed и по ключевому слову «норовирус» в базе данных РИНЦ. Из поисковой выдачи для обобщения извлечено 338 публикаций. Результаты и обсуждение. Норовирусы человека характеризуются генетическим разнообразием и быстро эволюционируют, ускользая от иммунного ответа. В сочетании с высокой контагиозностью и сложностями в культивировании норовирусов это обстоятельство затрудняет создание эффективной вакцины и усиливает важность интенсивной разработки мер неспецифической профилактики и совершенствования системы эпидемиологического надзора, что, помимо прочего, является экономически эффективным, способствуя рациональному использованию ресурсов здравоохранения. Меры неспецифической профилактики НВИ сводятся к обеспечению населения доброкачественными питьевой водой и пищевыми продуктами (в т. ч. за счет совершенствования технологий их деконтаминации), продвижению навыков личной гигиены, своевременной диагностике заболевания и изоляции заболевших из организованных коллективов. Современные методы включают организацию дозорного надзора за НВИ, мониторинг циркуляции возбудителей, внедрение технологий моделирования и прогнозирования заболеваемости. Целесообразно дальнейшее проведение прикладных эпидемиологических исследований для изучения различных противоэпидемических мер и оценки их медико-экономической эффективности, поскольку некоторые из них (включая применение кожных антисептиков) демонстрируют противоречивые результаты. Заключение. НВИ является актуальной инфекционной патологией, методы эпидемиологического надзора за которой нуждаются в дальнейшем совершенствовании в направлении повышения чувствительности и точности. Требуются дополнительные исследования эпидемиологической и экономической эффективности существующих мер профилактики: обеспечение микробиологической безопасности воды и пищевых продуктов, своевременное разобщение больных и здоровых, гигиена и антисептика рук.
Об авторах
А. А. КосоваРоссия
Анна Александровна Косова – кандидат медицинских наук, доцент
Екатеринбург
В. И. Чалапа
Россия
Владислав Игоревич Чалапа – аспирант
Екатеринбург
Т. М. Итани
Россия
Тарек Мохамедович Итани – кандидат биологических наук
Екатеринбург
А. В. Семенов
Россия
Александр Владимирович Семенов – доктор биологических наук
Екатеринбург
Список литературы
1. Farahmand M. [et al.]. Global prevalence and genotype distribution of norovirus infection in children with gastroenteritis: A meta-analysis on 6 years of research from 2015 to 2020 // Reviews in Medical Virology. 2021. Vol. 32, № 1. P. e2237.
2. Pires S. M. [et al.]. Aetiology-Specific Estimates of the Global and Regional Incidence and Mortality of Diarrhoeal Diseases Commonly Transmitted through Food // PLoS ONE. 2015. Vol. 10, № 12. P. e0142927.
3. Trivedi T. K. [et al.]. Clinical characteristics of norovirus-associated deaths: a systematic literature review // American Journal of Infection Control. 2013. Vol. 41, № 7. P. 654-657.
4. Bartsch S. M., Lopman B. A., Ozawa S., Hall A. J., Lee B. Y. Global Economic Burden of Norovirus Gastroenteritis // PLOS ONE. 2016. Vol. 11, № 4. P. e0151219.
5. Vinjé J. et al. ICTV Virus Taxonomy Profile: Caliciviridae // The Journal of General Virology. 2019. Vol. 100, № 11. P. 1469–1470.
6. Prasad B. V. [et al.]. X-ray crystallographic structure of the Norwalk virus capsid // Science. 1999. Vol. 286, № 5438. P. 287–290.
7. Chakravarty S. [et al.]. Evolutionary trace residues in noroviruses: importance in receptor binding, antigenicity, virion assembly, and strain diversity // Journal of Virology. 2005. Vol. 79, № 1. P. 554–568.
8. Chhabra P. [et al.]. Updated classification of norovirus genogroups and genotypes // The Journal of General Virology. 2019. Vol. 100, № 10. P. 1393–1406.
9. Kroneman A. [et al.]. Proposal for a unified norovirus nomenclature and genotyping // Archives of Virology. 2013. Vol. 158, № 10. P. 2059–2068.
10. Desai R. [et al.]. Severe outcomes are associated with genogroup 2 genotype 4 norovirus outbreaks: a systematic literature review // Clinical Infectious Diseases. 2012. Vol. 55, № 2. P. 189–193.
11. Ge L. [et al.]. Genomic and biological characterization of a pandemic norovirus variant GII.4 Sydney 2012 // Virus Genes. 2020. Vol. 56, № 2. P. 174–181.
12. Bull R. A., White P. A. Mechanisms of GII.4 norovirus evolution // Trends in Microbiology. 2011. Vol. 19, № 5. P. 233–240.
13. van Beek J. [et al.]. Molecular surveillance of norovirus, 2005–2016: an epidemiological analysis of data collected from the NoroNet network // The Lancet. Infectious Diseases. 2018. Vol. 18, № 5. P. 545–553.
14. Lindesmith L. C., Donaldson E. F., Lobue A. D., Cannon J. L., Zheng D.-P., Vinje J., Baric R. S. Mechanisms of GII.4 norovirus persistence in human populations // PLoS medicine. 2008. Vol. 5, № 2. P. e31.
15. Бутакова Л. В., Сапега Е. Ю., Троценко О. Е., Зайцева Т. А., Каравянская Т. Н., Лебедева Л. А. Водная вспышка острой кишечной инфекции, обусловленная рекомбинантным норовирусом генотипа GII.P7-GII.6, в городе Хабаровске в 2019 году // Здоровье населения и среда обитания. 2020. Т. 6, № 327. С. 50–54.
16. Tohma K. [et al.]. Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints // PLoS pathogens. 2021. Vol. 17, № 7. P. e1009744.
17. Parra G.I. Emergence of norovirus strains: A tale of two genes // Virus Evolution. 2019. Vol. 5, № 2. P. vez048.
18. Gustavsson L. [et al.]. Slow clearance of norovirus following infection with emerging variants of genotype GII.4 strains // Journal of Clinical Microbiology. 2017. Vol. 55, № 5. P. 1533–1539.
19. Cheng H.Y. [et al.]. Viral shedding in gastroenteritis in children caused by variants and novel recombinant norovirus infections // Medicine. 2021. Vol. 100, № 12. P. e25123.
20. Bok K., Green K. Y. Norovirus Gastroenteritis in Immunocompromised Patients // The New England journal of medicine. 2012. Vol. 367, № 22. P. 2126.
21. Teunis P.F.M. [et al.]. Norwalk virus: How infectious is it? // Journal of Medical Virology. 2008. Vol. 80, № 8. P. 1468–1476.
22. Qi R. [et al.]. Global Prevalence of Asymptomatic Norovirus Infection: A Meta-analysis // EClinicalMedicine. 2018. Vol. 2, № 3. P. 50–58.
23. Wu Q.S. [et al.]. Norovirus shedding among symptomatic and asymptomatic employees in outbreak settings in Shanghai, China // BMC infectious diseases. 2019. Vol. 19, № 1. P. 592.
24. Barclay L. [et al.]. Infection control for norovirus // Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2014. Vol. 20, № 8. P. 731.
25. Pogan R., Dülfer J., Uetrecht C. Norovirus assembly and stability // Current Opinion in Virology. 2018. Vol. 31. P. 59–65.
26. Wingender J., Flemming H. C. Biofilms in drinking water and their role as reservoir for pathogens: The second European PhD students workshop: Water and health ? Cannes 2010 // International Journal of Hygiene and Environmental Health. 2011. Vol. 214, № 6. P. 417–423.
27. Takahashi H. [et al.]. Effect of food residues on norovirus survival on stainless steel surfaces // PloS One. 2011. Vol. 6, № 8. P. e21951.
28. Tuladhar E. [et al.]. Residual viral and bacterial contamination of surfaces after cleaning and disinfection // Applied and Environmental Microbiology. 2012. Vol. 78, № 21. P. 7769.
29. Zonta W. [et al.]. Comparative virucidal efficacy of seven disinfectants against murine norovirus and feline calicivirus, surrogates of human norovirus // Food and Environmental Virology. 2016. Vol. 8, № 1. P. 1–12.
30. Ciofi-Silva C.L. [et al.]. Norovirus recovery from floors and air after various decontamination protocols // The Journal of Hospital Infection. 2019. Vol. 103, № 3. P. 328–334.
31. Ettayebi K. [et al.]. Insights and Enhanced Human Norovirus Cultivation in Human Intestinal Enteroids // mSphere. 2021. Vol. 6, № 1. P. e01136–20.
32. Parrino T. A. [et al.]. Clinical Immunity in Acute Gastroenteritis Caused by Norwalk Agent // New England Journal of Medicine. 1977. Vol. 297, № 2. P. 86–89.
33. Johnson P.C. [et al.]. Multiple-Challenge Study of Host Susceptibility to Norwalk Gastroenteritis in US Adults // The Journal of Infectious Diseases. 1990. Vol. 161, № 1. P. 18–21.
34. Simmons K. [et al.]. Duration of Immunity to Norovirus Gastroenteritis // Emerging Infectious Diseases. 2013. Vol. 19, № 8. P. 1260.
35. Blazevic V. [et al.]. Development and maturation of norovirus antibodies in childhood // Microbes and Infection. 2016. Vol. 18, № 4. P. 263–269.
36. Ford-Siltz L. A., Tohma K., Parra G. I. Understanding the relationship between norovirus diversity and immunity // Gut Microbes. 2021. Vol. 13, № 1. P. e1900994.
37. Lindesmith L. [et al.]. Human susceptibility and resistance to Norwalk virus infection // Nature Medicine. 2003. Vol. 9, № 5. P. 548–553.
38. Lee R.M. [et al.]. Incubation periods of viral gastroenteritis: a systematic review // BMC Infectious Diseases. 2013. Vol. 13. P. 446.
39. Atmar R.L. [et al.]. Norwalk virus shedding after experimental human infection // Emerging Infectious Diseases. 2008. Vol. 14, № 10. P. 1553.
40. Dung T. T. N. [et al.]. The validation and utility of a quantitative one-step multiplex RT real-time PCR targeting rotavirus A and norovirus // Journal of Virological Methods. 2013. Vol. 187, № 1. P. 138–143.
41. Kumthip K. [et al.]. Comparative evaluation of norovirus infection in children with acute gastroenteritis by rapid immunochromatographic test, RT-PCR and real-time RT-PCR // Journal of Tropical Pediatrics. 2017. Vol. 63, № 6. P. 468–475.
42. Jonckheere S. [et al.]. Multicenter evaluation of the revised RIDA® QUICK test (N1402) for rapid detection of norovirus in a diagnostic laboratory setting // Diagnostic Microbiology and Infectious Disease. 2017. Vol. 88, № 1. P. 31–35.
43. Kaplon J. [et al.]. Diagnostic Accuracy of Four Commercial Triplex Immunochromatographic Tests for Rapid Detection of Rotavirus, Adenovirus, and Norovirus in Human Stool Samples // Journal of Clinical Microbiology. 2020. Vol. 59, № 1. P. e01749-20.
44. Kele B., Lengyel G., Deak J. Comparison of an ELISA and two reverse transcription polymerase chain reaction methods for norovirus detection // Diagnostic Microbiology and Infectious Disease. 2011. Vol. 70, № 4. P. 475–478.
45. Ramanan P. [et al.]. Detection and differentiation of norovirus genogroups I and II from clinical stool specimens using real-time PCR // Diagnostic Microbiology and Infectious Disease. 2017. Vol. 87, № 4. P. 325–327.
46. Kageyama T. [et al.]. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR // Journal of Clinical Microbiology. 2003. Vol. 41, № 4. P. 1548.
47. Updated Norovirus Outbreak Management and Disease Prevention Guidelines. URL : https://www.cdc.gov/mmwr/preview/mmwrhtml/rr6003a1.htm (дата обращения: 27.01.2022).
48. Holzknecht B. J. [et al.]. Sequence analysis of the capsid gene during a genotype II.4 dominated norovirus season in one university hospital: identification of possible transmission routes // PLoS ONE. 2015. Vol. 10, № 1. P. e0115331.
49. Fischer T. K., Rasmussen L. D., Fonager J. Taking gastro-surveillance into the 21st century // Journal of Clinical Virology. 2019. Vol. 117. P. 43–48.
50. Widdowson M. A. [et al.]. Detection of serum antibodies to bovine norovirus in veterinarians and the general population in the Netherlands // Journal of Medical Virology. 2005. Vol. 76, № 1. P. 119–128.
51. Villabruna N. [et al.]. Phylogenetic investigation of norovirus transmission between humans and animals // Viruses. 2020. Vol. 12, № 11. P. E1287.
52. Li J. [et al.]. New interventions against human norovirus: progress, opportunities, and challenges // Annual Review of Food Science and Technology. 2012. Vol. 3. P. 331–352.
53. Hebbelstrup B. [et al.]. Children attending day care centers are a year-round reservoir of gastrointestinal viruses // Scientific Reports. 2019. Vol. 9, № 1. P. 3286.
54. Karst S. M., Baric R. S. What is the reservoir of emergent human norovirus strains? // Journal of Virology. 2015. Vol. 89, № 11. P. 5756–5759.
55. van Beek J. [et al.]. Whole-genome next-generation sequencing to study within-host evolution of norovirus (NoV) among immunocompromised patients with chronic NoV infection // The Journal of Infectious Diseases. 2017. Vol. 216, № 12. P. 1513–1524.
56. Nilsson M. [et al.]. Evolution of human Calicivirus RNA in vivo: accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype // Journal of Virology. 2003. Vol. 77, № 24. P. 13117.
57. Eden J. S. [et al.]. Persistent infections in immunocompromised hosts are rarely sources of new pathogen variants // Virus Evolution. 2017. Vol. 3, № 2. P. vex018.
58. de Graaf M., Villabruna N., Koopmans M. P. Capturing norovirus transmission // Current Opinion in Virology. 2017. Vol. 22. P. 64–70.
59. Alsved M. [et al.]. Sources of airborne norovirus in hospital outbreaks // Clinical Infectious Diseases. 2020. Vol. 70, № 10. P. 2023–2028.
60. Kroneman A. [et al.]. Analysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the foodborne viruses in Europe network from 1 July 2001 to 30 June 2006 // Journal of Clinical Microbiology. 2008. Vol. 46, № 9. P. 2959.
61. Jin M. [et al.]. Norovirus outbreak surveillance, China, 2016–2018 // Emerging Infectious Diseases. 2020. Vol. 26, № 3. P. 437–445.
62. Gallimore C. I. [et al.]. Asymptomatic and symptomatic excretion of noroviruses during a hospital outbreak of gastroenteritis // Journal of Clinical Microbiology. 2004. Vol. 42, № 5. P. 2271–2274.
63. Wick J. Y. Norovirus: noxious in nursing facilities-almost unavoidable // The Consultant Pharmacist. 2012. Vol. 27, № 2. P. 98–104.
64. Grotto I. [et al.]. An outbreak of norovirus gastroenteritis on an Israeli military base // Infection. 2004. Vol. 32, № 6. P. 339–343.
65. Gallimore C. I. [et al.]. Noroviruses associated with acute gastroenteritis in a children’s day care facility in Rio de Janeiro, Brazil // Brazilian Journal of Medical and Biological Research. 2004. Vol. 37, № 3. P. 321–326.
66. Takkinen J. Recent norovirus outbreaks on river and seagoing cruise ships in Europe // Weekly releases (1997–2007). 2006. Vol. 11, № 24. P. 2973.
67. Lee H., Yoon Y. Etiological Agents Implicated in Foodborne Illness World Wide // Food Science of Animal Resources. 2021. Vol. 41, № 1. P. 1–7.
68. Verhoef L. [et al.]. Norovirus genotype profiles associated with foodborne transmission, 1999–2012 // Emerging Infectious Diseases. 2015. Vol. 21, № 4. P. 592–599.
69. Baert L. [et al.]. Review: norovirus prevalence in Belgian, Canadian and French fresh produce: a threat to human health? // International Journal of Food Microbiology. 2011. Vol. 151, № 3. P. 261–269.
70. Maunula L. [et al.]. Detection of human norovirus from frozen raspberries in a cluster of gastroenteritis outbreaks // Eurosurveillance. 2009. Vol. 14, № 49. P. 19435.
71. Nishida T. [et al.]. Genotyping and quantitation of noroviruses in oysters from two distinct sea areas in Japan // Microbiology and Immunology. 2007. Vol. 51, № 2. P. 177–184.
72. Esseili M. A. [et al.]. Tissue Distribution and Visualization of Internalized Human Norovirus in Leafy Greens // Applied and Environmental Microbiology. 2018. Vol. 84, № 12. P. e00292–18.
73. Baert L. [et al.]. Reported foodborne outbreaks due to noroviruses in Belgium: the link between food and patient investigations in an international context // Epidemiology & Infection. 2009. Vol. 137, № 3. P. 316–325.
74. Bozkurt H. [et al.]. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review // Critical Reviews in Food Science and Nutrition. 2021. Vol. 61. № 1. P. 116–138.
75. Bosch A. Human enteric viruses in the water environment: a minireview // International Microbiology. 1998. Vol. 1, № 3. P. 191–196.
76. Bonadonna L., Rosa G. L. A review and update on waterborne viral diseases associated with swimming pools // International Journal of Environmental Research and Public Health. 2019. Vol. 16, № 2. С. 166.
77. Lodder W. J. [et al.]. Presence of enteric viruses in source waters for drinking water production in The Netherlands // Applied and Environmental Microbiology. 2010. Vol. 76, № 17. P. 5965–5971.
78. Blanco A. [et al.]. Norovirus in Bottled Water Associated with Gastroenteritis Outbreak, Spain, 2016 // Emerging Infectious Diseases. 2017. Vol. 23, № 9. P. 1531–1534.
79. Matthews J. E. [et al.]. The epidemiology of published norovirus outbreaks: a systematic review of risk factors associated with attack rate and genogroup // Epidemiology and Infection. 2012. Vol. 140, № 7. P. 1161.
80. Inns T. [et al.]. Community-based surveillance of norovirus disease: a systematic review // BMC Infectious Diseases. 2017. Vol. 17, № 1. P. 657.
81. Gastañaduy P. A. [et al.]. Burden of norovirus gastroenteritis in the ambulatory setting – United States, 2001–2009 // The Journal of Infectious Diseases. 2013. Vol. 207, № 7. P. 1058–1065.
82. Zhou H. L. [et al.]. Burden of acute gastroenteritis caused by norovirus in China: A systematic review // The Journal of Infection. 2017. Vol. 75, № 3. P. 216–224.
83. Епифанова Н. В. [и др.]. Циркуляция норовирусов в условиях пандемии новой коронавирусной инфекции // Инфекционные болезни в современном мире: эволюция, текущие и будущие угрозы : сб. трудов ХIII Ежегодного Всероссийского Конгресса по инфекционным болезням имени академика В. И. Покровского; IV Всероссийской научно-практической конференции; VI Всероссийского симпозиума, Москва, 24–26 мая 2021 года. Москва : Общество с ограниченной ответственностью «Медицинское Маркетинговое Агентство», 2021. С. 59.
84. Hungerford D. [et al.]. Epidemiology and genotype diversity of norovirus infections among children aged < 5 years following rotavirus vaccine introduction in Blantyre, Malawi // Journal of Clinical Virology. 2020. Vol. 123. P. 104–248.
85. Lopman B. [et al.]. Host, weather and virological factors drive norovirus epidemiology: time-series analysis of laboratory surveillance data in England and Wales //PloS one. 2009. Vol. 4, №. 8. P. e6671.
86. Епифанова Н. В. [и др.]. Острые кишечные инфекции вирусной этиологии по данным многолетних наблюдений на территории Нижнего Новгорода // Медицинский алфавит. 2016. Т. 1, №. 6. С. 30–34.
87. Greer A. L., Drews S. J., Fisman D. N. Why «winter» vomiting disease? Seasonality, hydrology, and Norovirus epidemiology in Toronto, Canada // EcoHealth. 2009. Vol. 6, № 2. P. 192–199.
88. Wu C.-Y. [et al.]. Clinical characteristics and risk factors for children with norovirus gastroenteritis in Taiwan // Journal of Microbiology, Immunology, and Infection (Wei Mian Yu Gan Ran Za Zhi). 2021. Vol. 54, № 5. P. 909–917.
89. Heusinkveld M. [et al.]. Potential causative agents of acute gastroenteritis in households with preschool children: prevalence, risk factors, clinical relevance and household transmission // European Journal of Clinical Microbiology & Infectious Diseases. 2016. Vol. 35, № 10. P. 1691–1700.
90. Prag C., Prag M., Fredlund H. Proton pump inhibitors as a risk factor for norovirus infection // Epidemiology and Infection. 2017. Vol. 145, № 8. P. 1617.
91. Dai Y.C. [et al.]. Surveillance and risk factors of norovirus gastroenteritis among children in a southern city of China in the fall-winter seasons of 2003-2006 // Journal of Paediatrics and Child Health. 2010. Vol. 46, № 1–2. P. 45–50.
92. Kobayashi D. [et al.]. Factors associated with the detection of norovirus among asymptomatic adults // Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 2021. P. S1198–743X(21)00321-9.
93. Bartsch S. M., O’Shea K. J., Lee B. Y. The clinical and economic burden of norovirus gastroenteritis in the United States // The Journal of infectious diseases. 2020. Vol. 222, № 11. P. 1910–1919.
94. Tam C. C., O’Brien S. J. Economic Cost of Campylobacter, Norovirus and Rotavirus Disease in the United Kingdom // PloS One. 2016. Vol. 11, № 2. P. e0138526.
95. Vinjé J. Advances in Laboratory Methods for Detection and Typing of Norovirus // Journal of Clinical Microbiology. 2015. Vol. 53, № 2. P. 373.
96. Сбитнева Н. Н. [и др.]. Вспышка острых кишечных заболеваний, вызванная норовирусами 1 генотипа в Екатеринбурге в 2006 году // Молекулярная диагностика – 2007, Москва, 28–30 ноября 2007 года / под редакцией В.И. Покровского. Москва, 2007. С. 312–313.
97. Епифанова Н. В. [и др.]. Вспышка острой кишечной инфекции, вызванная норовирусом генотипа GII.1, в Нижнем Новгороде // Инфекционные болезни. 2014. Vol. 12, № S1. С. 97–98.
98. Епифанова Н. В. [и др.]. Возрастание частоты обнаружения норовирусов в Нижнем Новгороде и Дзержинске в 2008–2009 гг. // Труды Института полиомиелита и вирусных энцефалитов имени МП Чумакова РАМН. Медицинская вирусология. 2009. Т. 26. С. 29–30.
99. Сергевнин В. И. [и др.]. Тенденции в многолетней динамике заболеваемости населения острыми кишечными инфекциями и эпидемиологические особенности вспышек в последние годы // Эпидемиология и инфекционные болезни. 2015. Т. 20, № 4. С. 17–21.
100. Statutory notifiable diseases. Centre for Health Protection, Department of Health. The Government of the Hong Kong Special Administrative Region. – URL : https://cdis.chp.gov.hk/CDIS_CENO_ONLINE/disease.html (дата обращения: 20.11.2021).
101. Surveillance Case Definitions for Current and Historical Conditions. Centers for Disease Control and Prevention. U.S. Department of Health & Human Services. URL : https://ndc.services.cdc.gov (дата обращения: 20.11.2021).
102. Zhou H. [et al.]. The epidemiology of norovirus gastroenteritis in China: disease burden and distribution of genotypes // Frontiers of Medicine. 2020. Vol. 14, № 1. P. 1–7.
103. Bernard H. [et al.]. Epidemiology of norovirus gastroenteritis in Germany 2001–2009: eight seasons of routine surveillance // Epidemiology and Infection. 2014. Vol. 142, № 1. P. 63–74.
104. Shah M. P. [et al.]. Near real-time surveillance of U.S. norovirus outbreaks by the norovirus sentinel testing and tracking network – United States, August 2009-July 2015 // Morbidity and mortality weekly report. 2017. Vol. 66, № 7. P. 185–189.
105. Donaldson A. L. [et al.]. School attendance registers for the syndromic surveillance of infectious intestinal disease in UK children: protocol for a retrospective analysis // JMIR research protocols. 2022. Vol. 11, № 1. P. e30078.
106. De Grazia S. [et al.]. Sentinel hospital-based surveillance for norovirus infection in children with gastroenteritis between 2015 and 2016 in Italy // PloS One. 2018. Vol. 13, № 12. P. e0208184.
107. Guo S. [et al.]. Monitoring the results of foodborne diseases in sentinel hospitals in Wenzhou city, China from 2014 to 2015 // Iranian Journal of Public Health. 2018. Vol. 47, № 5. P. 674–681.
108. Taniuchi M. [et al.]. Etiology of diarrhea requiring hospitalization in Bangladesh by quantitative polymerase chain reaction, 2014–2018 // Clinical Infectious Diseases. 2021. Vol. 73, № 9. P. e2493-e2499.
109. Ласт Дж. М. [лит. подгот. текста А. В. Полуниной ; пер. с англ. А. Никольской]. Эпидемиологический словарь. 4-е изд. Москва : Глобус, 2009. 316 p.
110. NoroNet / RIVM. URL : https://www.rivm.nl/en/noronet (дата обращения: 12.01.2022).
111. Kroneman A. [et al.]. An automated genotyping tool for enteroviruses and noroviruses // Journal of Clinical Virology. 2011. Vol. 51, № 2. P. 121–125.
112. Свидетельство о государственной регистрации базы данных № 2019621347 Российская Федерация. Нуклеотидные последовательности генома норовирусов (NoroGen) : № 2019621259 : заявл. 16.07.2019 : опубл. 22.07.2019 / Н. В. Епифанова, В. Ю. Епифанов ; заявитель Федеральное бюджетное учреждение науки «Нижегородский научно-исследовательский институт эпидемиологии и микробиологии имени акад. И. Н. Блохиной » Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ННИИЭМ имени акад. И. Н. Блохиной ).
113. Pouey J. [et al.]. Implementation of a national waterborne disease outbreak surveillance system: overview and preliminary results, France, 2010 to 2019 // Eurosurveillance. 2021. Vol. 26, № 34. P. 2001–2466.
114. Демин А. П. Региональные различия в обеспечении населения России централизованным водоснабжением и безопасной питьевой водой / А. П. Демин // Региональные исследования. 2019. № 2 (64). С. 80–91.
115. World Health Organization WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007–2015. WHO estimates of the global burden of foodborne diseases. World Health Organization, 2015. 255 p.
116. Guidelines for the public health management of gastroenteritis outbreaks due to norovirus or suspected viral agents in Australia. Australian Government Department of Health and Ageing. Australian Government Department of Health and Ageing. URL : https://www1.health.gov.au/internet/main/publishing.nsf/Content/cda-cdna-norovirus.htm (дата обращения: 20.11.2021).
117. Sandmann F. G. [et al.]. Estimating the hospital burden of norovirus-associated gastroenteritis in England and its opportunity costs for nonadmitted patients // Clinical Infectious Diseases. 2018. Vol. 67, № 5. P. 693.
118. Mattner F., Guyot A., Henke-Gendo C. Analysis of norovirus outbreaks reveals the need for timely and extended microbiological testing // The Journal of Hospital Infection. 2015. Vol. 91, № 4. P. 332–337.
119. Sideroglou T. [et al.]. Management and investigation of viral gastroenteritis nosocomial outbreaks: lessons learned from a recent outbreak, Greece, 2012 // Hippokratia. 2014. Vol. 18, № 3. P. 204.
120. Sadique Z. [et al.]. Cost-effectiveness of ward closure to control outbreaks of norovirus infection in United Kingdom national health service hospitals // The Journal of Infectious Diseases. 2016. Vol. 213, Suppl 1. P. S19–26.
121. Lopman B. A. [et al.]. Institutional risk factors for outbreaks of nosocomial gastroenteritis: survival analysis of a cohort of hospital units in South-west England, 2002-2003 // The Journal of Hospital Infection. 2005. Vol. 60, № 2. P. 135–143.
122. Darley E. S. R. [et al.]. Impact of moving to a new hospital build, with a high proportion of single rooms, on healthcareassociated infections and outbreaks // The Journal of Hospital Infection. 2018. Vol. 98, № 2. P. 191–193.
123. Facciolà A. [et al.]. The role of the hospital environment in the healthcare-associated infections: a general review of the literature // European Review for Medical and Pharmacological Sciences. 2019. Vol. 23, № 3. P. 1266–1278.
124. Hei H. [et al.]. Development of a novel prevention bundle for pediatric healthcare-associated viral infections // Infection Control and Hospital Epidemiology. 2018. Vol. 39, № 9. P. 1086–1092.
125. Mitchell C. [et al.]. Reducing the number and impact of outbreaks of nosocomial viral gastroenteritis: time-series analysis of a multidimensional quality improvement initiative // BMJ quality & safety. 2016. Vol. 25, № 6. P. 466–474.
126. Lindsay L. [et al.]. A decade of norovirus disease risk among older adults in upper-middle and high income countries: a systematic review //BMC Infectious diseases. 2015. Vol. 15, №. 1. P. 1–16.
127. Adams C. [et al.]. Quantifying the roles of vomiting, diarrhea, and residents vs. staff in norovirus transmission in U.S. nursing home outbreaks // PLoS computational biology. 2020. Vol. 16, № 3. P. e1007271.
128. Chen Y., Hall A. J., Kirk M. D. Norovirus Disease in Older Adults Living in Long-Term Care Facilities: Strategies for Management // Current Geriatrics Reports. 2017. Vol. 6, № 1. P. 26–33.
129. Gruber J. F. [et al.]. Risk Factors for Norovirus Gastroenteritis among Nicaraguan Children // The American Journal of Tropical Medicine and Hygiene. 2017. Vol. 97, № 3. P. 937–943.
130. Blaney D. D. [et al.]. Use of alcohol-based hand sanitizers as a risk factor for norovirus outbreaks in long-term care facilities in northern New England: December 2006 to March 2007 // American Journal of Infection Control. 2011. Vol. 39, № 4. P. 296–301.
131. Lacombe A. [et al.]. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma // Food Microbiology. 2017. Vol. 63. P. 1–5.
132. Lou F. [et al.]. Variable High-Pressure-Processing Sensitivities for Genogroup II Human Noroviruses // Applied and Environmental Microbiology. 2016. Vol. 82, № 19. P. 6037–6045.
Рецензия
Для цитирования:
Косова АА, Чалапа ВИ, Итани ТМ, Семенов АВ. Эпидемиологическая характеристика норовирусной инфекции. Уральский медицинский журнал. 2022;21(3):114-128. https://doi.org/10.52420/2071-5943-2022-21-3-114-128
For citation:
Kosova AA, Chalapa VI, Itani TM, Semenov AV. Epidemiological portrait of noroviral infection. Ural Medical Journal. 2022;21(3):114-128. (In Russ.) https://doi.org/10.52420/2071-5943-2022-21-3-114-128