Оценка потенциальной иммуногенности рекомбинантных человеческих костных морфогенетических белков
https://doi.org/10.52420/2071-5943-2022-21-5-116-127
Аннотация
Введение. Костные морфогенетические белки (BMPs) являются подгруппой суперсемейства белков трансформирующих фактор роста бета (TGF-β), где играют важную роль в формировании и восстановлении костной ткани. Рекомбинантные костные морфогенетические белки человека (rhBMPs) в настоящее время проходят клиническую оценку в эффективности усиления процессов регенерации костной ткани после травм и заболеваний опорно-двигательного аппарата. Клинические испытания сопровождались подробным определением безопасности с использованием анализов как in vitro, так и in vivo. Первоначально высказывались опасения по поводу иммуногенности некоторых терапевтических белков из-за их нечеловеческого происхождения. Однако белки, полученные из сыворотки или тканей человека, и продукты, полученные из рекомбинантной ДНК, такие как rhBMPs, идентичные или почти идентичные нативным человеческим белкам, также оказались иммуногенными. Цель работы – провести оценку возможных реакций со стороны иммунной системы при применении rhBMPs, уделяя особое внимание ADA и потенциальным стратегиям, направленным на минимизацию иммуногенности rhBMPs. Материалы и методы. Для всестороннего поиска оригинальных работ, обзоров литературы, клинических случаев и метаанализов, демонстрирующих возможные реакции со стороны иммунной системы при применении rhBMPs, использованы базы данных PubMed, Embase, Google Scholar, база Кокрановской библиотеки (Cochrane Database). Результаты. Проанализированы возможные реакции со стороны иммунной системы при применении rhBMPs как в клинических, так и в доклинических исследованиях. Было выявлено, что выработка антител является одним из побочных эффектов после применения rhBMPs. Тем не менее зарегистрированные случаи иммуногенности rhBMPs значительно различаются из-за отсутствия стандартизации методов. Заключение. В различных клинических испытаниях не наблюдались иммунологически связанные нежелательные явления, а образование антител никогда не оказывало отрицательного воздействия на формирование новой костной ткани и клинические исходы.
Об авторах
У. Ф. МухаметовРоссия
Урал Фаритович Мухаметов, кандидат медицинских наук
Уфа
С. В. Люлин
Россия
Сергей Владимирович Люлин, доктор медицинских наук
Челябинск
Д. Ю. Борзунов
Россия
Дмитрий Юрьевич Борзунов, доктор медицинских наук, доцент
Екатеринбург
И. Ф. Гареев
Россия
Ильгиз Фанилевич Гареев, старший научный сотрудник
Уфа
Список литературы
1. Sampath T.K., Reddi A.H. Discovery of bone morphogenetic proteins – A historical perspective. Bone. 2020;140:115548. https://doi.org/10.1016/j.bone.2020.115548.
2. Gomez-Puerto M.C., Iyengar P.V., García de Vinuesa A. et al. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol. 2019;247(1):9–20. https://doi.org/10.1002/path.5170.
3. Lykissas M., Gkiatas I. Use of recombinant human bone morphogenetic protein-2 in spine surgery. World J Orthop. 2017;8(7):531–535. https://doi.org/10.5312/wjo.v8.i7.531.
4. Lowery J.W., Rosen V. Bone Morphogenetic Protein-Based Therapeutic Approaches. Cold Spring Harb Perspect Biol. 2018;10(4):a022327. https://doi.org/10.1101/cshperspect.a022327.
5. Dimitrov D.S. Therapeutic proteins. Methods Mol Biol. 2012;899:1–26. https://doi.org/10.1007/978-1-61779-921-1_1.
6. de Spéville B.D., Moreno V. Antidrug Antibodies and Drug Development: Challenges in the Immunotherapy Era. Clin Cancer Res. 2021;27(10):2669–2671. https://doi.org/10.1158/1078-0432.CCR-21-0168.
7. Bloem K., Hernández-Breijo B., Martínez-Feito A., Rispens T. Immunogenicity of Therapeutic Antibodies: Monitoring Antidrug Antibodies in a Clinical Context. Ther Drug Monit. 2017;39(4):327–332. https://doi.org/10.1097/FTD.0000000000000404.
8. Garcês S., Demengeot J. The Immunogenicity of Biologic Therapies. Curr Probl Dermatol. 2018;53:37–48. https://doi.org/10.1159/000478077.
9. Wang W., Roberts C.J. Protein aggregation - Mechanisms, detection, and control. Int J Pharm. 2018;550(1-2):251–268. https://doi.org/10.1016/j.ijpharm.2018.08.043.
10. Pham N.B., Meng W.S. Protein aggregation and immunogenicity of biotherapeutics. Int J Pharm. 2020;585:119523. https://doi.org/10.1016/j.ijpharm.2020.119523.
11. Vultaggio A., Perlato M., Nencini F. et al. How to Prevent and Mitigate Hypersensitivity Reactions to Biologicals Induced by Anti-Drug Antibodies? Front Immunol. 2021;12:765747. https://doi.org/10.3389/fimmu.2021.765747.
12. Meunier S., de Bourayne M., Hamze M. et al. Specificity of the T Cell Response to Protein Biopharmaceuticals. Front Immunol. 2020;11:1550. https://doi.org/10.3389/fimmu.2020.01550.
13. Cassotta A., Mikol V., Bertrand T. et al. A single T cell epitope drives the neutralizing anti-drug antibody response to natalizumab in multiple sclerosis patients. Nat Med. 2019;25(9):1402–1407. https://doi.org/10.1038/s41591-019-0568-2.
14. McMaster M., Mohr K., Page A. et al. Epitope characterization of anti-drug antibodies-a tool for discovery and health: an overview of the necessity of early epitope characterization to avoid anti-drug antibodies and promote patient health. Expert Opin Biol Ther. 2021;21(6):705–715. https://doi.org/10.1080/14712598.2021.
15. Vaisman-Mentesh A., Gutierrez-Gonzalez M., DeKosky B.J., Wine Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front Immunol. 2020;11:1951. https://doi.org/10.3389/fimmu.2020.01951.
16. Mukherjee J., Gupta M.N. Protein aggregates: Forms, functions and applications. Int J Biol Macromol. 2017;97:778–789. https://doi.org/10.1016/j.ijbiomac.2016.11.014.
17. Baum J., Raleigh D. Protein Aggregation. Protein Sci. 2018;27(7):1149–1150. https://doi.org/10.1002/pro.3446.
18. Devi S., Chaturvedi M., Fatima S., Priya S. Environmental factors modulating protein conformations and their role in protein aggregation diseases. Toxicology. 2022;465:153049. https://doi.org/10.1016/j.tox.2021.153049.
19. Kraus T., Winter G., Engert J. Test models for the evaluation of immunogenicity of protein aggregates. Int J Pharm. 2019;559:192–200. https://doi.org/10.1016/j.ijpharm.2019.01.015.
20. Nabhan M., Pallardy M., Turbica I. Immunogenicity of Bioproducts: Cellular Models to Evaluate the Impact of Therapeutic Antibody Aggregates. Front Immunol. 2020;11:725. https://doi.org/10.3389/fimmu.2020.00725.
21. Sundermann J., Zagst H., Kuntsche J. et al. Bone Morphogenetic Protein 2 (BMP-2) Aggregates Can be Solubilized by Albumin-Investigation of BMP-2 Aggregation by Light Scattering and Electrophoresis. Pharmaceutics. 2020;12(12):1143. https://doi.org/10.3390/pharmaceutics12121143.
22. Lundahl M.L.E., Fogli S., Colavita P.E., Scanlan E.M. Aggregation of protein therapeutics enhances their immunogenicity: causes and mitigation strategies. RSC Chem Biol. 2021;2(4):1004–1020. https://doi.org/10.1039/d1cb00067e.
23. Arslan F.B., Ozturk Atar K., Calis S. Antibody-mediated drug delivery. Int J Pharm. 2021;596:120268. https://doi.org/10.1016/j.ijpharm.2021.120268.
24. Sensi M., Berto M., Gentile S. et al. Anti-drug antibody detection with label-free electrolyte-gated organic field-effect transistors. Chem Commun (Camb). 2021;57(3):367–370. https://doi.org/10.1039/d0cc03399e.
25. Zhang P., Jain P., Tsao C. et al. Proactively Reducing Anti-Drug Antibodies via Immunomodulatory Bioconjugation. Angew Chem Int Ed Engl. 2019;58(8):2433–2436. https://doi.org/10.1002/anie.201814275.
26. Kowalczewski C.J., Saul J.M. Biomaterials for the Delivery of Growth Factors and Other Therapeutic Agents in Tissue Engineering Approaches to Bone Regeneration. Front Pharmacol. 2018;9:513. https://doi.org/10.3389/fphar.2018.00513.
27. Galimberti F., Lubelski D., Healy A.T. et al. A Systematic Review of Lumbar Fusion Rates With and Without the Use of rhBMP-2. Spine (Phila Pa 1976). 2015;40(14):1132–1139. https://doi.org/10.1097/BRS.0000000000000971.
28. Schierano G., Canuto R.A., Mauthe von Degerfeld M. et al. Role of rhBMP-7, Fibronectin, And Type I Collagen in Dental Implant Osseointegration Process: An Initial Pilot Study on Minipig Animals. Materials (Basel). 2021;14(9):2185. https://doi.org/10.3390/ma14092185.
29. Yang W., Gomes R.R., Brown A.J. et al. Chondrogenic differentiation on perlecan domain I, collagen II, and bone morphogenetic protein-2-based matrices. Tissue Eng. 2006;12(7):2009–2024. https://doi.org/10.1089/ten.2006.12.2009.
30. Lynn A.K., Yannas I.V., Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater. 2004;71(2):343–354. https://doi.org/10.1002/jbm.b.30096.
31. Burkus J.K., Sandhu H.S., Gornet M.F., Longley M.C. Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am. 2005;87(6):1205–1212. https://doi.org/10.2106/JBJS.D.02532.
32. Schmidt T., Stachon S., Mack A. et al. Evaluation of a thin and mechanically stable collagen cell carrier. Tissue Eng Part C Methods. 2011;17(12):1161–1170. https://doi.org/10.1089/ten.TEC.2011.0201.
33. Pluhar G.E., Turner A.S., Pierce A.R. et al. A comparison of two biomaterial carriers for osteogenic protein-1 (BMP-7) in an ovine critical defect model. J Bone Joint Surg Br. 2006 Jul;88(7):960–966. https://doi.org/10.1302/0301-620X.88B7.17056.
34. Agrawal V., Sinha M. A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater. 2017;105(4):904–925. https://doi.org/10.1002/jbm.b.33599.
35. Begam H., Nandi S.K., Kundu B., Chanda A. Strategies for delivering bone morphogenetic protein for bone healing. Mater Sci Eng C Mater Biol Appl. 2017;70(1):856–869. https://doi.org/10.1016/j.msec.2016.09.074.
36. Halloran D., Durbano H.W., Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol. 2020;8(3):19. https://doi.org/10.3390/jdb8030019.
37. Hamuro L., Kijanka G., Kinderman F. et al. Perspectives on Subcutaneous Route of Administration as an Immunogenicity Risk Factor for Therapeutic Proteins. J Pharm Sci. 2017;106(10):2946–2954. https://doi.org/10.1016/j.xphs.2017.05.030.
38. Louis-Ugbo J., Kim H.S., Boden S.D. et al. Retention of 125I-labeled recombinant human bone morphogenetic protein-2 by biphasic calcium phosphate or a composite sponge in a rabbit posterolateral spine arthrodesis model. J Orthop Res. 2002;20(5):1050–1059. https://doi.org/10.1016/S0736-0266(02)00011-6.
39. Chen F., Bi D., Cao G. et al. Bone morphogenetic protein 7-transduced human dermal-derived fibroblast cells differentiate into osteoblasts and form bone in vivo. Connect Tissue Res. 2018;59(3):223–232. https://doi.org/10.1080/03008207.2017.1353085.
40. Carreon L.Y., Glassman S.D., Brock D.C. et al. Adverse events in patients re-exposed to bone morphogenetic protein for spine surgery. Spine (Phila Pa 1976). 2008;33(4):391–393. https://doi.org/10.1097/BRS.0b013e3181642a49.
41. US Food and Drug Administration: Information on Premarket Approval Applications. INFUSE Bone Graft. Rockville, MD: US Food and Drug Administration, 2002 URL: http://www.fda.gov/cdrh/pdf5/p050053.html (Accessed 12 February 2009).
42. Pierce A.R., Alaoui-Ismaili M.H., Denison N. et al. Teratology studies in NZW rabbits following immunization with bone morphogenetic protein-7 (BMP-7). Toxicol Sci. 2007; 96:444.
43. Nencini F., Pratesi S., Petroni G. et al. Assays and strategies for immunogenicity assessment of biological agents. Drug Dev Res. 2014;75(1):4–6. https://doi.org/10.1002/ddr.21184.
44. Mire-Sluis A.R., Barrett Y.C., Devanarayan V. et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J Immunol Methods. 2004;289(1–2):1–16. https://doi.org/10.1016/j. jim.2004.06.002.
45. Cortez M.A., Masrorpour F., Ivan C. et al. Bone morphogenetic protein 7 promotes resistance to immunotherapy. Nat Commun. 2020;11(1):4840. https://doi.org/10.1038/s41467-020-18617-z. Erratum in: Nat Commun. 2020;11(1):5144.
46. Walker D.H., Wright N.M. Bone morphogenetic proteins and spinal fusion. Neurosurg Focus. 2002;13(6):e3. https://doi.org/10.3171/foc.2002.13.6.4.
47. Makhni M.C., Caldwell J.M., Saifi C. et al. Tissue engineering advances in spine surgery. Regen Med. 2016;11(2):211–222. https://doi.org/10.2217/rme.16.3.
48. Lee K.B., Taghavi C.E., Murray S.S. et al. BMP induced inflammation: a comparison of rhBMP-7 and rhBMP-2. J Orthop Res. 2012;30(12):1985–1994. https://doi.org/10.1002/jor.22160.
49. Kim R.Y., Seong Y., Cho T.H. et al. Local administration of nuclear factor of activated T cells (NFAT) c1 inhibitor to suppress early resorption and inflammation induced by bone morphogenetic protein-2. J Biomed Mater Res A. 2018;106(5):1299–1310. https://doi.org/10.1002/jbm.a.36332.
50. Poynton A.R., Lane J.M. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine (Phila Pa 1976). 2002;27(16):40–48. https://doi.org/10.1097/00007632-200208151-00010.
51. Freire M.O., You H.K., Kook J.K. et al. Antibody-mediated osseous regeneration: a novel strategy for bioengineering bone by immobilized anti-bone morphogenetic protein-2 antibodies. Tissue Eng Part A. 2011;17(23–24):2911–2918. https://doi.org/10.1089/ten.tea.2010.0584.
52. Hwang C.J., Vaccaro A.R., Lawrence J.P. et al. Immunogenicity of bone morphogenetic proteins. J Neurosurg Spine. 2009;10(5):443– 451. https://doi.org/10.3171/2009.1.SPINE08473.
53. Kim H.J., Chung J.H., Shin S.Y. et al. Efficacy of rhBMP-2/Hydroxyapatite on Sinus Floor Augmentation: A Multicenter, Randomized Controlled Clinical Trial. J Dent Res. 2015;94(9):158–165. https://doi.org/10.1177/0022034515594573.
54. Burkus J.K., Gornet M.F., Glassman S.D. et al. Blood serum antibody analysis and long-term follow-up of patients treated with recombinant human bone morphogenetic protein-2 in the lumbar spine. Spine (Phila Pa 1976). 2011;36(25):2158–2167. https://doi.org/10.1097/BRS.0b013e3182059a8c.
55. Jones A.L., Bucholz R.W., Bosse M.J. et al. BMP-2 Evaluation in Surgery for Tibial Trauma-Allgraft (BESTT-ALL) Study Group. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88(7):1431–1441. https://doi.org/10.2106/JBJS.E.00381.
56. Moshel Y.A., Hernandez E.I., Kong L. et al. Acute renal insufficiency, supraventricular tachycardia, and confusion after recombinant human bone morphogenetic protein-2 implantation for lumbosacral spine fusion. J Neurosurg Spine. 2008;8(6):589–593. https://doi.org/10.3171/SPI/2008/8/6/589.
57. Boden S.D., Zdeblick T.A., Sandhu H.S., Heim S.E. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine (Phila Pa 1976). 2000;25(3):376–381. https://doi.org/10.1097/00007632-200002010-00020.
58. Govender S., Csimma C., Genant H.K. et al. BMP-2 Evaluation in Surgery for Tibial Trauma (BESTT) Study Group. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84(12):2123–2134. https://doi.org/10.2106/00004623-200212000-00001.
59. Geesink R.G., Hoefnagels N.H., Bulstra S.K. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br. 1999;81(4):710–718. https://doi.org/10.1302/0301-620x.81b4.9311.
60. Friedlaender G.E., Perry C.R., Cole J.D. et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83(2):151–158.
61. Hwang C.J., Vaccaro A.R., Hong J. et al. Immunogenicity of osteogenic protein 1: results from a prospective, randomized, controlled, multicenter pivotal study of uninstrumented lumbar posterolateral fusion. J Neurosurg Spine. 2010;13(4):484–493. https://doi.org/10.3171/2010.4.SPINE09957.
62. Sauerborn M., van de Vosse E., Delawi D. et al. Natural antibodies against bone morphogenic proteins and interferons in healthy donors and in patients with infections linked to type-1 cytokine responses. J Interferon Cytokine Res. 2011;31(9):661–669. https://doi.org/10.1089/jir.2010.0075.
63. Vaccaro A.R., Whang P.G., Patel T. et al. The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J. 2008; 8(3): 457–465. https://doi.org/10.1016/j.spinee.2007.03.012.
Рецензия
Для цитирования:
Мухаметов УФ, Люлин СВ, Борзунов ДЮ, Гареев ИФ. Оценка потенциальной иммуногенности рекомбинантных человеческих костных морфогенетических белков. Уральский медицинский журнал. 2022;21(5):116-127. https://doi.org/10.52420/2071-5943-2022-21-5-116-127
For citation:
Mukhametov UF, Lyulin SV, Borzunov DY, Gareev IF. Evaluation of the potential immunogenicity of recombinant human bone morphogenetic proteins. Ural Medical Journal. 2022;21(5):116-127. (In Russ.) https://doi.org/10.52420/2071-5943-2022-21-5-116-127