Preview

Уральский медицинский журнал

Расширенный поиск

Герминальные мутации в генах PALB2 и CHEK2 и наследственный рак

https://doi.org/10.52420/2071-5943-2023-22-3-126-136

Аннотация

Введение. Не менее 3 % всех случаев рака связаны с наследственными изменениями в генах предрасположенности к злокачественным новообразованиям. Помимо широко известных генов BRCA1,2, в рутинную диагностику внедряются и другие гены, участвующие наравне с BRCA1,2 в системе репарации ДНК и поддержании целостности генома, такие как PALB2, CHEK2. В этом обзоре мы представляем актуальную информацию из последних исследований о строении и функции генов PALB2 и CHEK2, и диагностике мутаций в этих генах, а также об их клиническом значении. Цель работы – актуализация и систематизация данных о генах PALB2 и CHEK2 для лучшего понимания их значения в канцерогенезе, сопряженных с ними рисков развития злокачественных новообразований, профилактики и тактики лечения носителей мутаций.

Материалы и методы. Проведен поиск в базах данных PubMed, Google Scholar, Cyberleninka. Критериями включения статей были новизна и актуальность данных, соответствие тематики обзора. На основании этого было выбрано 79 литературных источников.

Результаты и обсуждение. Мутации в гене PALB2 распространены в 0,5 до 2,1 % случаев рака и ассоциированы с повышенным риском развития рака молочной железы (52,8 % к 80 годам), а также рака яичников (5 %), поджелудочной железы (2,8 %). Частота изменений в гене CHEK2 достигает 5 % и сопряжена с риском развития рака молочной железы (до 40 % к 80 годам) и колоректальным раком. В ходе многочисленных исследований отмечается взаимосвязь наличия мутаций в этих генах и развития рака предстательной железы, легкого, почки и меланомы.

Заключение. Более полное понимание спектра генетической предрасположенности и определение геноспецифических рисков рака может привести к улучшению скрининга, профилактики и терапевтических стратегий для пациентов с наследственным раком и их семей.

Об авторах

М. А. Голотюк
Свердловский областной онкологический диспансер; Институт медицинских клеточных технологий
Россия

Марина Анатольевна Голотюк – научный сотрудник

Екатеринбург



А. А. Бережной
Свердловский областной онкологический диспансер; Институт медицинских клеточных технологий
Россия

Артем Андреевич Бережной – научный сотрудник

Екатеринбург



Н. В. Казанцева
Свердловский областной онкологический диспансер; Институт медицинских клеточных технологий
Россия

Наталья Владимировна Казанцева – заведующая патологоанатомическим отделением

Екатеринбург



А. В. Дорофеев
Свердловский областной онкологический диспансер; Институт медицинских клеточных технологий; Уральский государственный медицинский университет
Россия

Александр Владимирович Дорофеев – доктор медицинских наук

Екатеринбург



Т. И. Борзунова
Уральский государственный медицинский университет
Россия

Татьяна Игоревна Борзунова – студентка

Екатеринбург



Список литературы

1. Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302−308. https://doi.org/10.1038/nature12981.

2. Turnbull C, Sud A, Houlston RS. Cancer genetics, precision prevention and a call to action. Nat Genet. 2018;50(9):1212−1218. https://doi.org/10.1038/s41588-018-0202-0.

3. Xia B, Sheng Q, Nakanishi K et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell. 2006;22(6):719−729. https://doi.org/10.1016/j.molcel.2006.05.022.

4. Zhang F, Ma J, Wu J et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol. 2009;19(6):524–529. https://doi.org/10.1016/j.cub.2009.02.018.

5. Ducy M, Sesma-Sanz L, Guitton-Sert L et al. The Tumor Suppressor PALB2: Inside Out. Trends Biochem Sci. 2019;44(3):226−240. https://doi.org/10.1016/j.tibs.2018.10.008.

6. Simhadri S, Vincelli G, Huo Y et al. PALB2 connects BRCA1 and BRCA2 in the G2/M checkpoint response. Oncogene. 2019;38(10):1585−1596. https://doi.org/10.1038/s41388-018-0535-2.

7. Reid S, Schindler D, Hanenberg H et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007;39(2):162−164. https://doi.org/10.1038/ng1947.

8. Rahman N, Seal S, Thompson D et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007;39(2):165−167. https://doi.org/10.1038/ng1959.

9. Yang X, Leslie G, Doroszuk A et al. Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol. 2020;38(7):674−685. https://doi.org/10.1200/JCO.19.01907.

10. Erkko H, Xia B, Nikkilä J et al. A recurrent mutation in PALB2 in Finnish cancer families. Nature. 2007;446(7133):316–319. https://doi.org/10.1038/nature05609.

11. Dansonka-Mieszkowska A, Kluska A, Moes J et al. A novel germline PALB2 deletion in Polish breast and ovarian cancer patients. BMC Med Genet. 2010;11:20. https://doi.org/10.1186/1471-2350-11-20.

12. Bogdanova N, Sokolenko AP, Iyevleva AG et al. PALB2 mutations in German and Russian patients with bilateral breast cancer. Breast Cancer Res Treat. 2011;126(2):545−550. https://doi.org/10.1007/s10549-010-1290-4.

13. Casadei S, Norquist BM, Walsh T et al. Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res. 2011;71(6):2222−2229. https://doi.org/10.1158/0008-5472.CAN-10-3958.

14. Teo ZL, Park DJ, Provenzano E et al. Prevalence of PALB2 mutations in Australasian multiple-case breast cancer families. Breast Cancer Res. 2013;15(1):R17. https://doi.org/10.1186/bcr3392.

15. Catucci I, Peterlongo P, Ciceri S et al. PALB2 sequencing in Italian familial breast cancer cases reveals a high-risk mutation recurrent in the province of Bergamo. Gen Med. 2014;16(9):688−694. https://doi.org/10.1038/gim.2014.13.

16. Kluska A, Balabas A, Piatkowska M et al. PALB2 mutations in BRCA1/2-mutation negative breast and ovarian cancer patients from Poland. BMC Med Genomics. 2017;10(1):14. https://doi.org/10.1186/s12920-017-0251-8.

17. Preobrazhenskaya EV, Shleykina AU, Gorustovich OA et al. Frequency and molecular characteristics of PALB2-associated cancers in Russian patients. Int J Cancer. 2021;148(1):203–210. https://doi.org/10.1002/ijc.33317.

18. Zhou J, Wang H, Fu F et al. Spectrum of PALB2 germline mutations and characteristics of PALB2-related breast cancer: Screening of 16,501 unselected patients with breast cancer and 5890 controls by next-generation sequencing. Cancer. 2020;126(14):3202−3208. https://doi.org/10.1002/cncr.32905.

19. Ng PS, Boonen RA, Wijaya E et al. Characterisation of protein-truncating and missense variants in PALB2 in 15 768 women from Malaysia and Singapore. J Med. Genet 2022;59(5):481−491. https://doi.org/10.1136/jmedgenet-2020-107471.

20. Antoniou AC, Casadei S, Heikkinen T et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(6):497−506. https://doi.org/10.1056/NEJMoa1400382.

21. Deng M, Chen HH, Zhu X et al. Prevalence and clinical outcomes of germline mutations in BRCA1/2 and PALB2 genes in 2769 unselected breast cancer patients in China. Int J Cancer. 2019;145(6):1517–1528. https://doi.org/10.1002/ijc.32184.

22. Ramus SJ, Song H, Dicks E et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst. 2015;107(11):djv214. https://doi.org/10.1093/jnci/djv214.

23. Norquist BM, Harrell MI, Brady MF et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2016;2(4):482–490. https://doi.org/10.1001/jamaoncol.2015.5495.

24. Hu C, Hart SN, Polley EC et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA. 2018;319(23):2401−2409. https://doi.org/10.1001/jama.2018.6228.

25. Shindo K, Yu J, Suenaga M et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol. 2017;35(30):3382−3390. https://doi.org/10.1200/JCO.2017.72.3502.

26. Nicolosi P, Ledet E, Yang S et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019;5(4):523−528. https://doi.org/10.1001/jamaoncol.2018.6760.

27. Dillon KM, Bekele RT, Sztupinszki Z et al. PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. NPJ Precis Oncol. 2022;6(1):49. https://doi.org/10.1038/s41698-022-00291-7.

28. Lu C, Xie M, Wendl MC et al. Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun. 2015;6:10086. https://doi.org/10.1001/jamaoncol.2014.168.

29. Sahasrabudhe R, Lott P, Bohorquez M et al. Germline mutations in PALB2, BRCA1, and RAD51C, which regulate DNA recombination repair, in patients with gastric cancer. Gastroenterology. 2017;152(5):983−986.e6. https://doi.org/10.1053/j.gastro.2016.12.010.

30. Vogelaar IP, van der Post RS, van Krieken JHJ et al. Unraveling genetic predisposition to familial or early onset gastric cancer using germline whole-exome sequencing. Eur J Hum Genet. 2017;25(11):1246−1252. https://doi.org/10.1038/ejhg.2017.138.

31. Fewings E, Larionov A, Redman J et al. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study. Lancet Gastroenterol Hepatol. 2018;3(7):489−498. https://doi.org/10.1016/S2468-1253(18)30079-7.

32. AlDubayan SH, Giannakis M, Moore ND et al. Inherited DNA-repair defects in colorectal cancer. Am J Hum Genet. 2018;102(3):401−414. https://doi.org/10.1016/j.ajhg.2018.01.018.

33. Zhang J, Tang S, Zhang C et al. Investigation of PALB2 mutation and correlation with immunotherapy biomarker in chinese non-small cell lung cancer patients. Front Oncol. 2022;11:742833. https://doi.org/10.3389/fonc.2021.742833.

34. Lau B, Menzies AM, Joshua AM. Ongoing partial response at 6 months to olaparib for metastatic melanoma with somatic PALB2 mutation after failure of immunotherapy: a case report. Ann Oncol. 2021;32(2):280−282. https://doi.org/10.1016/j.annonc.2020.11.006.

35. Xia B, Biswas K, Foo TK et al. Rare germline variants in PALB2 and BRCA2 in familial and sporadic chordoma. Hum Mutat 2022;43(10):1396−1407. https://doi.org/10.1002/humu.24427.

36. Tung NM, Boughey JC, Pierce LJ et al. Management of hereditary breast cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J Clin Oncol. 2020;38(18):2080−2106. https://doi.org/10.1200/JCO.20.00299.

37. Tischkowitz M, Balmaña J, Foulkes WD et al. Management of individuals with germline variants in PALB2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(8):1416−1423. https://doi.org/10.1038/s41436-021-01151-8.

38. Goggins M, Overbeek KA, Brand R et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69(1):7−17. https://doi.org/10.1136/gutjnl-2019-319352.

39. Blasina A, de Weyer IV, Laus MC et al. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr Biol. 1999;9(1):1−10. https://doi.org/10.1016/s0960-9822(99)80041-4.

40. Stolarova L, Kleiblova P, Janatova M et al. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells. 2020;9(12):2675. https://doi.org/10.3390/cells9122675.

41. Bell DW, Varley JM, Szydlo TE et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 1999;286(5449):2528−2531. https://doi.org/10.1126/science.286.5449.2528.

42. Sodha N, Houlston RS, Bullock S et al. Increasing evidence that germline mutations in CHEK2 do not cause Li-Fraumeni syndrome. Hum Mutat. 2002;20(6):460−462. https://doi.org/10.1002/humu.10136.

43. Cybulski C, Górski B, Huzarski T et al. CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet. 2004;75(6):1131−1135. https://doi.org/10.1086/426403.

44. Vahteristo P, Bartkova J, Eerola H, et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet. 2002;71(2):432−438. https://doi.org/10.1086/341943.

45. Bermisheva MA, Takhirova ZR, Bogdanova N, Khusnutdinova EK. Frequency of CHEK2 gene mutations in breast cancer patients from Republic of Bashkortostan. Mol Biol. 2014;48:46–51. https://doi.org/10.1134/S0026893314010026.

46. Sun J, Meng H, Yao L et al. Germline mutations in cancer susceptibility genes in a large series of unselected breast cancer patients. Clin Cancer Res. 2017;23(20):6113-6119. https://doi.org/10.1158/1078-0432.CCR-16-3227.

47. Zeng C, Guo X, Wen W et al. Evaluation of pathogenetic mutations in breast cancer predisposition genes in population-based studies conducted among Chinese women. Breast Cancer Res Treat. 2020;181(2):465−473. https://doi.org/10.1007/s10549-020-05643-0.

48. Ansari N, Shahrabi S, Khosravi A et al. Prognostic significance of CHEK2 mutation in progression of breast cancer. Lab Med. 2019;50(3):e36–e41. https://doi.org/10.1093/labmed/lmz009.

49. Decker B, Allen J, Luccarini C et al. Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks. J Med Genet. 2017;54(11):732−741. https://doi.org/10.1136/jmedgenet-2017-104588.

50. Akdeniz D, Schmidt MK, Seynaeve CM et al. Risk factors for metachronous contralateral breast cancer: A systematic review and meta-analysis. Breast. 2019;44:1−14. https://doi.org/10.1016/j.breast.2018.11.005.

51. Ansari N, Shahrabi S, Khosravi A et al. Prognostic significance of CHEK2 mutation in progression of breast cancer. Lab Med. 2019;50(3):e36−e41. https://doi.org/10.1093/labmed/lmz009.

52. Schmidt MK, Hogervorst F, van Hien R et al. Age- and tumor subtype-specific breast cancer risk estimates for CHEK2*1100delC carriers. J Clin Oncol. 2016;34(23):2750−2760. https://doi.org/10.1200/JCO.2016.66.5844.

53. Huszno J, Kolosza Z. Molecular characteristics of breast cancer according to clinicopathological factors. Mol Clin Oncol. 2019;11(2):192−200. https://doi.org/10.3892/mco.2019.1869.

54. Szwiec M, Tomiczek-Szwiec J, Kluźniak W et al. Genetic predisposition to male breast cancer in Poland. BMC Cancer. 2021;21(1):975. https://doi.org/10.1186/s12885-021-08718-3.

55. Kleiblova P, Stolarova L, Krizova K et al. Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int J Cancer. 2019;145(7):1782−1797. https://doi.org/10.1002/ijc.32385.

56. Koczkowska M, Krawczynska N, Stukan M et al. Spectrum and prevalence of pathogenic variants in ovarian cancer susceptibility genes in a group of 333 patients. Cancers (Basel). 2018;10(11):442. https://doi.org/10.3390/cancers10110442.

57. Carter NJ, Marshall ML, Susswein LR et al. Germline pathogenic variants identified in women with ovarian tumors. Gynecol Oncol. 2018;151(3):481−488. https://doi.org/10.1016/j.ygyno.2018.09.030.

58. Lilyquist J, LaDuca H, Polley E et al. Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol Oncol. 2017;147(2):375−380. https://doi.org/10.1016/j.ygyno.2017.08.030.

59. Бетенева Е.И., Филиппова М.Г., Тюляндина А.С. с соавт. Высокая частота мутаций в генах brca1, BRCA2, CHEK2, NbN, BLM у больных раком яичников в российской популяции. Опухоли женской репродуктивной системы. 2014;4:51−56.

60. Ogrodniczak A, Menkiszak J, Gronwald J et al. Association of recurrent mutations in BRCA1, BRCA2, RAD51C, PALB2, and CHEK2 with the risk of borderline ovarian tumor. Hered Cancer Clin Pract. 2022;20(1):11. https://doi.org/10.1186/s13053-022-00218-0.

61. Wieme G, Kral J, Rosseel T et al. Prevalence of germline pathogenic variants in cancer predisposing genes in Czech and Belgian pancreatic cancer patients. Cancers (Basel). 2021;13(17):4430. https://doi.org/10.3390/cancers13174430.

62. Dong X, Wang L, Taniguchi K et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003;72(2):270−280. https://doi.org/10.1086/346094.

63. Isaacsson Velho P, Silberstein JL, Markowski MC et al. Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer. Prostate. 2018;78(5):401−407. https://doi.org/10.1002/pros.23484.

64. Wu Y, Yu H, Zheng SL et al. A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer. Prostate. 2018;78(8):607−615. https://doi.org/10.1002/pros.23505.

65. Ged Y, Chaim JL, DiNatale RG et al. DNA damage repair pathway alterations in metastatic clear cell renal cell carcinoma and implications on systemic therapy. J Immunother Cancer. 2020;8(1):e000230. https://doi.org/10.1136/jitc-2019-000230.

66. Carlo MI, Mukherjee S, Mandelker D et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol. 2018;4(9):1228−1235. https://doi.org/10.1001/jamaoncol.2018.1986.

67. Pekova B, Dvorakova S, Sykorova V et al. Somatic genetic alterations in a large cohort of pediatric thyroid nodules. Endocr Connect. 2019;8(6):796−805. https://doi.org/10.1530/EC-19-0069.

68. Zhao Y, Yu T, Chen L et al. A Germline CHEK2 mutation in a family with papillary thyroid cancer. Thyroid. 2020;30(6):924−930. https://doi.org/10.1089/thy.2019.0774.

69. Federico AD, Gelsomino F, De Biase D, Ardizzoni A. Should we test cancer susceptibility genes in routinely used multigene panels? A case of synchronous lung adenocarcinoma and breast cancer associated with germline CHEK2 mutation. Clin Lung Cancer. 2022;23(4):e283−e284. https://doi.org/10.1016/j.cllc.2021.09.011.

70. Mastronikolis S, Adamopoulou M, Papouliakos S et al. Mutational landscape in uveal melanoma. J BUON. 2021;26(4):1194−1197.

71. Stubbins RJ, Korotev S, Godley LA. Germline CHEK2 and ATM variants in myeloid and other hematopoietic malignancies. Curr Hematol Malig Rep. 2022;17(4):94−104. https://doi.org/10.1007/s11899-022-00663-7.

72. Wood ME, McKinnon W, Garber J. Risk for breast cancer and management of unaffected individuals with non-BRCA hereditary breast cancer. Breast J. 2020;26(8):1528−1534. https://doi.org/10.1111/tbj.13969.

73. Tung NM, Robson ME, Ventz S, et al. TBCRC 048: Phase II study of olaparib for metastatic breast cancer and mutations in homologous recombination-related genes. J Clin Oncol. 2020;38(36):4274−4282. https://doi.org/10.1200/JCO.20.02151.

74. Angius G, Tomao S, Stati V et al. Prexasertib, a checkpoint kinase inhibitor: from preclinical data to clinical development. Cancer Chemother Pharmacol. 2020;85(1):9−20. https://doi.org/10.1007/s00280-019-03950-y.


Рецензия

Для цитирования:


Голотюк МА, Бережной АА, Казанцева НВ, Дорофеев АВ, Борзунова ТИ. Герминальные мутации в генах PALB2 и CHEK2 и наследственный рак. Уральский медицинский журнал. 2023;22(3):126-136. https://doi.org/10.52420/2071-5943-2023-22-3-126-136

For citation:


Golotyuk MA, Berezhnoj AA, Kazanceva NV, Dorofeev AV, Borzunova TI. Germline mutations in the PALB2 and CHEK2 genes and hereditary cancer. Ural Medical Journal. 2023;22(3):126-136. (In Russ.) https://doi.org/10.52420/2071-5943-2023-22-3-126-136

Просмотров: 654


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)