Preview

Ural Medical Journal

Advanced search

Development of a method for the quantitative determination of ritonavir and lopinavir in blood plasma

https://doi.org/10.52420/2071-5943-2023-22-6-50-58

Abstract

   Introduction. Therapeutic monitoring of antiretroviral drugs (ARVs) is necessary in routine practice, both to objectively monitor adherence and to ensure a personalized approach to patient treatment. Most methods of quantitative determination of ARVP, in particular, ritonavir and lopinavir, are carried out using high-performance liquid chromatography with a tandem mass-selective detector (HPLC-MS/MS) or in combination with UV detection (HPLC-UV), with a single quadrupole detector (HPLC-MS). However, these methods provided for the use of a large range of expensive solvents of a high degree of purification, a long time of analysis and sample preparation, which prevented the introduction of these methods into routine practice.

   The aim of the study to evaluate the effectiveness of the developed technique for quantifying the concentration of Ritonavir and Lopinavir in blood plasma by HPLC-UV.

   Materials and methods. The following drugs were used in the study:
Ritonavir and Lopinavir. Efavirenz was used for the internal standard. Randomly selected blood samples with anticoagulant from patients who did not take antiretroviral drugs were used as test samples. Chromatographic separation and detection were performed by HPLC-UV. The chromatographic separation process was controlled and the chromatographic analysis results were processed using the OpenLab CDS Chromatographic Data System software. The calibration curves were calculated using a linear regression mathematical model based on the least square’s method. Statistical data processing was carried out using the software product “Statistica v.12” (StatSoft Russia).

   Results. The linear range of plasma concentration determination was 1-50 µg/ml for Ritonavir and 2-100 µg/ml for Lopinavir. Due to the short retention time – less than 7 minutes, the technique allows you to examine up to 7.5 samples per hour on one device.

   Discussion. Most of the methods of quantitative determination of Ritonavir and Lopinavir for therapeutic monitoring of ART are carried out using HPLC-MS/MS or HPLC-UV, however, all of them provided for the use of a large range of expensive solvents of a high degree of purification, a long time of analysis and sample preparation, which prevented the introduction of these methods into routine practice.

   Conclusion. The developed technique for quantifying the concentration of Ritonavir and Lopinavir in blood plasma using high-performance liquid chromatography with an ultraviolet detector (HPLC-UV) has a sufficiently wide linear range of concentration determination and high performance for further validation and implementation into clinical practice.

About the Authors

P. M. Manakov
Bureau of Forensic Medical Examination
Russian Federation

Pavel M. Manakov, chemist-expert of a medical organization

Ekaterinburg



O. P. Kolesov
Bureau of Forensic Medical Examination
Russian Federation

Oleg P. Kolesov, deputy head, forensic medical expert of the highest category, thanatologist

Ekaterinburg



I. L. Tikhonova
Ural State Medical University
Russian Federation

Irina L. Tikhonova, Candidate of Chemical Sciences, Associate
Professor

Department of General Chemistry

Ekaterinburg



M. V. Piterskiy
Federal Scientific Research Institute of Viral Infections “Virome” Rospotrebnadzor
Russian Federation

Mikhail V. Piterskiy, researcher

Ural Federal District AIDS Centre

Ekaterinburg



References

1. Pokrovskii VV, Ladnaia NN, Sokolova EV et al. HIV infection. Informatcionnyi biulleten № 33. Moscow: HIV Monitoring Reference Center FBIS Central Research Institute of Epidemiology of Rospotrebnadzor; 2009. 24 p. (In Russ.). Available at: http://www.hivrussia.info/elektronnye-versii-informatsionnyh-byulletenij/ [Accessed 30<sup>th</sup> November 2023].

2. Pokrovskii VV, Ladnaia NN, Sokolova EV. HIV infection. Informatcionnyi biulleten № 46. Moscow: HIV Monitoring Reference Center FBIS Central Research Institute of Epidemiology of Rospotrebnadzor; 2021. 83 p. (In Russ.). Available at: http://www.hivrussia.info/elektronnye-versii-informatsionnyh-byulletenij/ [Accessed 30<sup>th</sup> November 2023].

3. Asgedom SW, Maru M, Berihun B et al. Immunologic and Clinical Failure of Antiretroviral Therapy in People Living with Human Immunodeficiency Virus within Two Years of Treatment. BioMed Research International. 2020;2020:1–8. doi: 10.1155/2020/5474103.

4. Kausar S, Said KF, Ishaq Mujeeb Ur Rehman M et al. A review: Mechanism of action of antiviral drugs. International Journal of Immunopathology and Pharmacology. 2021;35:205873842110026. doi: 10.1177/20587384211002621.

5. Liu P, You Y, Liao L et al. Impact of low-level viremia with drug resistance on CD4 cell counts among people living with HIV on antiretroviral treatment in China. BMC Infectious Diseases. 2022;22(1):426. doi: 10.1186/s12879-022-07417-z.

6. Kirichenko A, Kireev D, Lapovok I et al. HIV-1 Drug Resistance among Treatment-Naïve Patients in Russia: Analysis of the National Database, 2006–2022. Viruses. 2023;15(4):1-16. doi: 10.3390/v15040991.

7. Crommentuyn KML, Kappelhoff BS, Mulder JW et al. Population pharmacokinetics of lopinavir in combination with ritonavir in HIV-1-infected patients. British Journal of Clinical Pharmacology. 2005;60(4):378–389. doi: 10.1111/j.1365-2125.2005.02455.x

8. Schoergenhofer C, Jilma B, Stimpfl T et al. Pharmacokinetics of Lopinavir and Ritonavir in Patients Hospitalized With Coronavirus Disease 2019 (COVID-19). Annals of Internal Medicine. 2020;173(8):670–672. doi: 10.7326/M20-1550.

9. Best BM, Capparelli EV, Diep H et al. Pharmacokinetics of Lopinavir/Ritonavir Crushed versus Whole Tablets in Children. Journal of acquired immune deficiency syndromes. 2011;58(4):385–391. doi: 10.1097/QAI.0b013e318232b057.

10. Lamorde M, Wang X, Neary M et al. Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics of Efavirenz 400 mg Once Daily During Pregnancy and Post-Partum. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2018;67(5):785–790. doi: 10.1093/cid/ciy161.

11. Ozhmegova EN, Bobkova MR. HIV drug resistance: past and current trends. Problems of Virology. 2022;67(3):193–205. (In Russ.) doi: 10.36233/0507-4088-113.

12. Zijp TR, Izzah Z, Åberg C et al. Clinical Value of Emerging Bioanalytical Methods for Drug Measurements: A Scoping Review of Their Applicability for Medication Adherence and Therapeutic Drug Monitoring. Drugs. 2021;81(17):1983–2002. doi: 10.1007/s40265-021-01618-7.

13. Sambyalova AYu, Bairova TA, Manaenkova TL et al. Virological failure of antiretroviral therapy and associated social and clinical factors in children and adolescents living with HIV. Journal Infectology. 2022;14(5):51–59. (In Russ.) doi: 10.22625/2072-6732-2022-14-5-51-59.

14. Ivanova VA. Market analysis of antiretroviral drugs. Innovatsii. Nauka. Obrazovaniye. 2020;(14):108–113. (In Russ.).

15. Loos NHC, Beijnen JH, Schinkel AH. The inhibitory and inducing effects of ritonavir on hepatic and intestinal CYP3A and other drug-handling proteins. Biomedicine & Pharmacotherapy. 2023;162:114636. doi: 10.1016/j.biopha.2023.114636

16. Kachanov DA, Atangulov GI, Hamade Kh. et al. Aspects of the prescribing antiretroviral drugs in the treatment of HIV-infected patients. Mezhdunarodnyi nauchno-issledovatelskii zhurnal. 2021;104(2):25–30. (In Russ.). doi: 10.23670/IRJ.2021.103.2.066.

17. Ramírez-Ramírez A, Sánchez-Serrano E, Loaiza-Flores G et al. Simultaneous quantification of four antiretroviral drugs in breast milk samples from HIV-positive women by an ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. PLoS ONE. 2018;13(1):e0191236. doi: 10.1371/journal.pone.0191236.

18. Li L, Yu X, Xie D et al. Influence of traditional Chinese medicines on the in vivo metabolism of lopinavir/ritonavir based on UHPLC-MS/MS analysis. Journal of Pharmaceutical Analysis. 2022;12(2):270–277. doi: 10.1016/j.jpha.2021.06.006.

19. Chu L, Wu Y, Duan C et al. Simultaneous quantitation of zidovudine, efavirenz, lopinavir and ritonavir in human hair by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Journal of Chromatography B. 2018;1097–1098:54–63. doi: 10.1016/j.jchromb.2018.08.031

20. Dickinson L, Robinson L, Tjia J et al. Simultaneous determination of HIV protease inhibitors amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir in human plasma by high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B. 2005;829(1):82–90. doi: 10.1016/j.jchromb.2005.09.032

21. Komarov TN, Shohin IE, Miskiv OA et al. Development and Validation of Atazanavir and Ritonavir Determination in Human Plasma by HPLC-MS Method. Razrabotka i registracia lekarstvennyh sredstv. 2020;9(1):99–108. (In Russ.) doi: 10.33380/2305-2066-2020-9-1-99-108

22. Notari S, Sergi M, Montesano C et al. Simultaneous determination of lamivudine, lopinavir, ritonavir, and zidovudine concentration in plasma of HIV-infected patients by HPLC-MS/MS. IUBMB Life. 2012;64(5):443–449. doi: 10.1002/iub.1025

23. Titier K, Lagrange F, Péhourcq F et al. High-Performance Liquid Chromatographic Method for the Simultaneous Determination of the Six HIV-Protease Inhibitors and Two Non-Nucleoside Reverse Transcriptase Inhibitors in Human Plasma. Therapeutic Drug Monitoring. 2002;24(3):417. doi: 10.1097/00007691-200206000-00015.

24. Droste JAH, Verweij-van Wissen CPWGM, Burger DM. Simultaneous Determination of the HIV Drugs Indinavir, Amprenavir, Saquinavir, Ritonavir, Lopinavir, Nelfinavir, the Nelfinavir Hydroxymetabolite M8, and Nevirapine in Human Plasma by Reversed-Phase High-Performance Liquid Chromatography. Therapeutic Drug Monitoring. 2003;25(3):393. doi: 10.1097/00007691-200306000-00023.

25. Dailly E, Raffi F, Jolliet P. Determination of atazanavir and other antiretroviral drugs (indinavir, amprenavir, nelfinavir and its active metabolite M8, saquinavir, ritonavir, lopinavir, nevirapine and efavirenz) plasma levels by high performance liquid chromatography with UV detection. Journal of Chromatography B. 2004;813(1):353–358. doi: 10.1016/j.jchromb.2004.10.005

26. Notari S, Bocedi A, Ippolito G et al. Simultaneous determination of 16 anti-HIV drugs in human plasma by high-performance liquid chromatography. Journal of Chromatography B. 2006;831(1):258–266. doi: 10.1016/j.jchromb.2005.12.016

27. Verbesselt R, Van Wijngaerden E, de Hoon J. Simultaneous determination of 8 HIV protease inhibitors in human plasma by isocratic high-performance liquid chromatography with combined use of UV and fluorescence detection: Amprenavir, indinavir, atazanavir, ritonavir, lopinavir, saquinavir, nelfinavir and M8-nelfinavir metabolite. Journal of Chromatography B. 2007;845(1):51–60. doi: 10.1016/j.jchromb.2006.07.068

28. Sy`chev KS, Okunskaia KA. The problems of correct verification of the suitability and evaluation of the economic efficiency of HPLC techniques. Analitika. 2021;(4): 294-298. (In Russ.) doi: 10.22184/2227-572X.2021.11.4.294.298

29. Breilh D, Pellegrin I, Rouzés A et al. Virological, intracellular and plasma pharmacological parameters predicting response to lopinavir/ritonavir (KALEPHAR Study). AIDS. 2004;18(9):1305–1310. doi: 10.1097/00002030-200406180-00009

30. Danner SA, Carr A, Leonard JM et al. A Short-Term Study of the Safety, Pharmacokinetics, and Efficacy of Ritonavir, an Inhibitor of HIV-1 Protease. N Engl J Med. 1995;333(23):1528–1534. doi: 10.1056/NEJM199512073332303


Review

For citations:


Manakov PM, Kolesov OP, Tikhonova IL, Piterskiy MV. Development of a method for the quantitative determination of ritonavir and lopinavir in blood plasma. Ural Medical Journal. 2023;22(6):50-58. (In Russ.) https://doi.org/10.52420/2071-5943-2023-22-6-50-58

Views: 243


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)