Preview

Уральский медицинский журнал

Расширенный поиск

Макрофаги печени как ключевые регуляторы тканевого гомеостаза в органе

https://doi.org/10.52420/2071-5943-2023-22-6-85-93

Аннотация

   Введение. В работе обосновывается представление о макрофагах как о ключевых регуляторах тканевого гомеостаза в печени, действующих посредством врождённых и адаптивных иммунных реакций, инициируемых экзогенными и/или эндогенными сигналами о повреждении или клеточном стрессе. С одной стороны, сигналы из окружающей среды определяют поляризацию и продукцию макрофагов, а, с другой, сами макрофаги воздействуют на тканевое микроокружение и функции отдельных клеток и ткани в целом.

   Цель работы. На основании анализа современных данных показать, что пластичность и гетерогенность макрофагов определяет их функциональную активность как регуляторов гомеостаза в печени в норме и при повреждении.

   Материалы и методы. Поиск литературы, посвящённой изучению и анализу роли макрофагов в поддержании тканевого гомеостаза в печени, проводился в базе данных биомедицинских исследований Pubmed по ключевым словам «макрофаги печени», «клетки Купфера», «поляризация макрофагов», «тканевой гомеостаз», «регенерация печени» и их сочетаниям, с глубиной поиска 10 лет. Для написания обзора было отобрано 67 статей, соответствующих вышеуказанным критериям. В случае, если материалы аналогичного содержания присутствовали в нескольких публикациях, то предпочтение отдавалось наиболее свежему источнику. Большая часть отобранных для написания обзора статей (40 из 67) опубликована в 2017-2023 годах.

   Результаты и обсуждение. В статье отражены структурно-функциональные характеристики различных популяций макрофагов печени, отличающиеся по фенотипу и происхождению и функциям, что определяет их роль в гомеостазе.

   Заключение. Макрофаги являются ключевыми регуляторами гомеостаза в печени за счёт их способности воспринимать множество эндогенных и экзогенных сигналов в тканях и быстро реагировать на них в направлении стабилизации тканевого микроокружения.

Об авторах

К. В. Соколова
Институт иммунологии и физиологии Уральского отделения РАН
Россия

Ксения Викторовна Соколова, кандидат биологических наук, старший научный сотрудник

лаборатория морфологии и биохимии

Екатеринбург



И. Г. Данилова
Институт иммунологии и физиологии Уральского отделения РАН
Россия

Ирина Георгиевна Данилова, доктор биологических наук, главный научный сотрудник, заведующая лабораторией

лаборатория морфологии и биохимии

Екатеринбург



Список литературы

1. Abdullah Z, Knolle PA. Liver Macrophages in Healthy and Diseased Liver. Pflugers Arch. 2017;469(3–4);553–560. doi: 10.1007/s00424-017-1954-6.

2. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17:306–321. doi: 10.1038/nri.2017.11.

3. Elchaninov AV, Fatkhudinov TKh, Vishnyakova PA et al. Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells. 2019;8:1032. doi: 10.3390/cells8091032.

4. Xiaotian D, Jingqi L, Yanping X, Hongcui C. Role of macrophages in experimental liver injury and repair in mice (Review). Experimental and therapeutic medicine. 2019;17:3835–3847. doi: 10.3892/etm.2019.7450.

5. Wen Y, Lambrecht J, Ju C et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021;18:45–56. doi: 10.1038/s41423-020-00558-8.

6. Kabat AM, Pearce EJ. Inflammation by way of macrophage metabolism. Science. 2017;356(6337):488–489. doi: 10.1126/science.aan2691.

7. Krotova K, Khodayari N, Oshins R et al. Neutrophil elastase promotes macrophage cell adhesion and cytokine production through the integrin-Src kinases pathway. Sci Rep. 2020;10(15874). doi: 10.1038/s41598-020-72667-3.

8. Yu Y, Yue Z, Xu M et al. Macrophages play a key role in tissue repair and regeneration. Peer J. 2022;10:e14053. doi: 10.7717/peerj.14053.

9. Alshoubaki YK, Nayer B, Das S. Modulation of the activity of stem and progenitor cells by immune cells. Stem Cells Translational Medicine. 2022;11(3): 248–258. doi: 10.1093/stcltm/szab022.

10. Guillot A, Tacke F. Liver macrophages: Old dogmas and new insights. Hepatol Commun. 2019;3(6):730–743. doi: 10.1002/hep4.1356.

11. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300–1312. doi: 10.1016/j.jhep.2017.02.026.

12. Nguyen-Lefebvre AT, Horuzsko A. Kupffer cell metabolism and function. J Enzymol Metab. 2015;1(1):101. Epub 2015 Aug 14. PMID: 26937490.

13. Mass E, Ballesteros I, Farlik M et al. Specification of tissue-resident macrophages during organogenesis. Science. 2016;353:aaf4238. doi: 10.1126/science.aaf4238.

14. Tran S, Baba I, Poupel L et al. Impaired kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity. 2020;53:627-40 e5. doi: 10.1016/j.immuni.2020.06.003.

15. Li Z, Zhao J, Zhang S, Weinman SA. FOXO3-dependent apoptosis limits alcohol-induced liver inflammation by promoting infiltrating macrophage differentiation. Cell Death Discovery. 2018;4:16. doi: 10.1038/s41420-017-0020-7.

16. Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol. 2016;13:316–327. doi: 10.1038/cmi.2015.104.

17. Wang J, Kubes P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell. 2016;165:668–678. doi: 10.1016/j.cell.2016.03.009.

18. Sierro F, Evrard M, Rizzetto S et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity. 2017;47(2):374–388. doi: 10.1016/j.immuni.2017.07.018.

19. Li L, Wei W, Li Z et al. The spleen promotes the secretion of CCL2 and supports an M1 dominant phenotype in hepatic macrophages during liver fibrosis. Cell Physiol Biochem. 2018;51:557–574. doi: 10.1159/000495276.

20. Williams GM, Iatropoulos MJ. Alteration of liver cell function and proliferation: differentiation between adaptation and toxicity. Toxicol Pathol. 2002;30(1):41–53. doi: 10.1080/01926230252824699.

21. Duarte N, Coelho IC, Patarrao RS et al. How inflammation impinges on NAFLD: a role for Kupffer cells. BioMed Res Int. 2015;984578. doi: 10.1155/2015/984578.

22. Yamamoto T, Naito M, Moriyama H et al. Repopulation of murine kupffer cells after intravenous administration of liposome-encapsulated dichloromethylene diphosphonate. Am J Pathol. 1996;149(4):1271–1286. PMID: 8863675.

23. Steinhoff GBM, Sorg C, Wonigeit K, Pichlmayr R. Sequential analysis of macrophage tissue differentiation and kupffer cell exchange after human liver transplantation. Kupffer Cell Found. 1989.

24. Hongting H, Yefeng L, Tao Z et al. Innate immune cells in immune tolerance after liver transplantation. Frontiers in Immunology. 2018;9. doi: 10.3389/fimmu.2018.02401.

25. Weiyang L, Na C, Liying L. Heterogeneity and function of kupffer cells in liver injury. Frontiers in Immunology. 2022;13. doi: 10.3389/fimmu.2022.940867.

26. Żeromski J, Kierepa A, Brzezicha B et al. Pattern recognition receptors: Significance of expression in the liver. Arch. Immunol. Ther. Exp. 2020;68;29. doi: 10.1007/s00005-020-00595-1.

27. Patten DA, Wilkinson AL, O’Keeffe A, Shetty S. Scavenger receptors: Novel roles in the pathogenesis of liver inflammation and cancer. Semin Liver Dis. 2022;42(1):61–76. Epub 2021 Sep 22. doi: 10.1055/s-0041-1733876. Erratum in: Semin Liver Dis. 2021 Nov 18. PMID: 34553345.

28. Xu T, Du Y, Fang XB et al. New insights into Nod-like receptors (NLRs) in liver diseases. Int J Physiol Pathophysiol Pharmacol. 2018;10(1):1–16. PMID: 29593846.

29. Scott CL, Guilliams M. The role of Kupffer cells in hepatic iron and lipid metabolism. J Hepatol. 2018;69(5):1197–1199. doi: 10.1016/j.jhep.2018.02.013.

30. Diehl KL, Vorac J, Hofmann K et al. Kupffer cells sense free fatty acids and regulate hepatic lipid metabolism in high-fat diet and inflammation. Cells. 2020;9(10):2258. doi: 10.3390/cells9102258.

31. MacParland SA, Liu JC, Ma XZ et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 2018;9:4383. doi: 10.1038/s41467-018-06318-7.

32. MacPhee PJ, Schmidt EE, Groom AC. Evidence for Kupffer cell migration along liver sinusoids, from high-resolution in vivo microscopy. Am J Physiol. 1992;263(1 Pt 1):G17–23. doi: 10.1152/ajpgi.1992.263.1.G17.

33. Gandhi CR. Cellular Anatomy of the Liver (Hepatocyte, Biliary Epithelial Cells, Endothelial Cells, Kupffer Cells and Hepatic Stellate Cells). In: McManus LM, Mitchell RN (eds.). Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms. Amsterdam: Elsevier Press; 2014. P. 1759–1769. doi: 10.1016/B978-0-12-386456-7.04201-5.

34. Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells — gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol. 2018;15(9):555–567. doi: 10.1038/s41575-018-0020-y.

35. Brempelis KJ, Crispe IN. Infiltrating monocytes in liver injury and repair. Clin Transl Immunol. 2016:5:e113. doi: 10.1038/cti.2016.62.

36. Kulle A, Thanabalasuriar A, Cohen TS, Szydlowska M. Resident macrophages of the lung and liver: The guardians of our tissues. Front Immunol. 2022;13:1029085. doi: 10.3389/fimmu.2022.1029085.

37. Dal-Secco D, Wang J, Zeng Z et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212(4):447–456. doi: 10.1084/jem.20141539.

38. Yang J, Zhang L, Yu C. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1);1:1–9. doi: 10.1186/2050-7771-2-1.

39. Scott CL, Zheng F, De Baetselier P et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7:10321. doi: 10.1038/ncomms10321.

40. Lavin Y, Winter D, Blecher-Gonen R. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312–1326. doi: 10.1016/j.cell.2014.11.018.

41. Zigmond E, Samia-Grinberg S, Pasmanik-Chor M et al. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J. Immunol. 2014;193:344–353. doi: 10.4049/jimmunol.1400574.

42. Dal-Secco D, Wang J, Zeng Z et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447–456. doi: 10.1084/jem.20141539.

43. Cassado AA, D’Império LMR, Bortoluci KR. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Front Immunol. 2015;6:225. doi: 10.3389/fimmu.2015.00225.

44. Wang J, Kubes P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell. 2016;165:668–778. doi: 10.1016/j.cell.2016.03.009.

45. Roszer T. Immune functions of the M2 macrophages: host defense, self-tolerance, and autoimmunity. In: The M2 Macrophage. Progress in Inflammation Research, Vol. 86. Cham: Springer; 2020. P. 115–132. doi: 10.1007/978-3-030-50480-9_6.

46. Markose D, Kirkland P, Ramachandran P, Henderson NC. Immune cell regulation of liver regeneration and repair. Journal of Immunology and Regenerative Medicine. 2018;2:1–10. doi: 10.1016/j.regen.2018.03.003.

47. Marrone G, Shah VH, Gracia-Sancho J. Sinusoidal communication in liver fibrosis and regeneration. J Hepatol. 2016;65(3):608–617. doi: 10.1016/j.jhep.2016.04.018.

48. Heymann F, Peusquens J, Ludwig-Portugall I et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology. 2015;62:279–291. doi: 10.1002/hep.27793.

49. Ju C, Mandrekar P. Macrophages and Alcohol-Related Liver Inflammation. Alcohol Res. 2015;37(2):251–262. PMID: 26717583.

50. Guilliams M, Scott CL. Does niche competition determine the origin of tissue-resident macrophages? Nat. Rev. Immunol. 2017;17:451–460. doi: 10.1038/nri.2017.42.

51. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1 (LPS+) vs. classically and M2 (LPS–) vs. alternatively activated macrophages. Front. Immunol. 2019;10:1084. doi: 10.3389/fimmu.2019.01084.

52. Specht H, Emmott E, Koller T, Slavov N. High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity. bioRxiv. 2019:665307. doi: 10.1101/665307.

53. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17:306–321. doi: 10.1038/nri.2017.11.

54. Malyshev I, Malyshev Y. Current concept and update of the macrophage plasticity concept: Intracellular mechanisms of reprogramming and M3 macrophage “Switch” phenotype. Biomed Res. Int. 2015;2015:1–22. doi: 10.1155/2015/341308.

55. Poltavets AS, Vishnyakova PA, Elchaninov AV et al. Macrophage modification strategies for efficient cell therapy. Cells. 2020;9(6):1535. doi: 10.3390/cells9061535.

56. Murray PJ, Allen JE, Biswas SK et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. doi: 10.1016/j.immuni.2014.06.008.

57. Ebrahimkhani MR, Neiman JSA, Raredon M. Bioreactor technologies to support liver function in vitro. Advanced Drug Delivery Reviews. 2014;69–70:132–157. doi: 10.1016/j.addr.2014.02.011.

58. Seo W, Jeong WI. Hepatic non-parenchymal cells: Master regulators of alcoholic liver disease? World J Gastroenterol. 2016;22(4):1348–1356. doi: 10.3748/wjg.v22.i4.1348.

59. Bonnardel J, T’Jonck W, Gaublomme D et al. Stellate Cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity. 2019;51(4):638–654.e9. doi: 10.1016/j.immuni.2019.08.017.

60. Saha B, Momen-Heravi F, Furi I et al. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology. 2018;67(5):1986–2000. doi: 10.1002/hep.29732.

61. Lee C-H, Chun T. Anti-inflammatory role of TAM family of receptor tyrosine kinases via modulating macrophage function. Mol Cells. 2019;42:1–7. doi: 10.14348/molcells.2018.0419.

62. Wan J, Benkdane M, Alons E. M2 kupffer cells promote hepatocyte senescence: an IL-6-dependent protective mechanism against alcoholic liver disease. Am J Pathol. 2014;184:1763–1772. doi: 10.1016/j.ajpath.2014.02.014.

63. Cai X, Li Z, Zhang Q. CXCL6-EGFR-induced Kupffer cells secrete TGF-beta1 promoting hepatic stellate cell activation via the SMAD2/BRD4/C-MYC/EZH2 pathway in liver fibrosis. J Cell Mol Med. 2018;22:5050–5061. doi: 10.1111/jcmm.13787.

64. Preziosi ME, Monga SP. Update on the mechanisms of liver regeneration. Semin Liver Dis. 2017;37(2):141–151. doi: 10.1055/s-0037-1601351.

65. Ma P, Zhao W, Gao C et al. The Contribution of hepatic macrophage heterogeneity during liver regeneration after partial hepatectomy in mice. J Immunol Res. 2022;2022:3353250. doi: 10.1155/2022/3353250.

66. Bai L, Fu L, Li L et al. Cellular mechanisms of hepatoprotection mediated by M2-like macrophages. Med Sci Monit. 2018;24:2675–2682. doi: 10.12659/MSM.907222.

67. Wang C, Ma C, Gong L. Macrophage polarization and its role in liver disease. Front. Immunol. 2021;12. doi: 10.3389/fimmu.2021.803037.


Рецензия

Для цитирования:


Соколова КВ, Данилова ИГ. Макрофаги печени как ключевые регуляторы тканевого гомеостаза в органе. Уральский медицинский журнал. 2023;22(6):85-93. https://doi.org/10.52420/2071-5943-2023-22-6-85-93

For citation:


Sokolova KV, Danilova IG. Liver macrophages as the key regulators of tissue homeostasis in organ. Ural Medical Journal. 2023;22(6):85-93. (In Russ.) https://doi.org/10.52420/2071-5943-2023-22-6-85-93

Просмотров: 432


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)