Substantiation of the Preclinical Stage of Gonarthritis. Prospects for Early Chondroprotective Therapy
https://doi.org/10.52420/umj.24.1.39
EDN: EGZFLT
Abstract
The relevance of the problem. Late diagnosis of gonarthritis (GA) based on radiological criteria determines a decrease in the effectiveness of chondroprotective drugs (CD).
The aim is to identify early changes in the hyaline cartilage of the knee joints and evaluate the effectiveness of chondroprotective therapy at an early stage of the disease.
Materials and methods. 186 patients with high risk of GA were examined. All patients signed an informed consent. 119 patients took CD for two years, 67 patients did not receive therapy. The control group consisted of 31 healthy people without GA risk factors. Initially and 2 years later, everyone underwent ultrasound examination of the knees. The dynamics of the minimum thickness of hyaline cartilage (HC) was evaluated.
Results. After 2 years, the HC height in the control group decreased to (2.84±0.16) mm and had no statistically significant differences from the initial value. In the comparison group in which patients did not take CD, HC decreased by (0.24±0.15) mm, which is 2.7 times more than in the group of patients receiving CD and 4.8 times more than in the control group (p = 0.01). In the group receiving CD, the minimum thickness of HC decreased by (0.09±0.12) mm and was comparable with the indicators of the control group (p = 0.49).
Conclusions. In patients at high risk of GA, an initially low minimum cartilage thickness is determined, and its intensive loss is noted, compared with the control. The use of CD in patients at high risk of GA prevents the loss of HC at an early preclinical stage.
About the Authors
E. V. ArshinRussian Federation
Evgeny V. Arshin — Doctor of Sciences (Medicine), Professor of the Department of Hospital Therapy and Cardiology
Perm
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest.
D. A. Gorshkov
Russian Federation
Danil A. Gorshkov — Postgraduate Student of the Department of Hospital Therapy and Cardiology;
Rheumatologist of the Department of Primary Specialized Health Care
Perm
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest.
M. A. Radoshchekin
Russian Federation
Mikhail A. Radoshchekin — Rheumatologist
Tchaikovsky
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest.
O. V. Khlynova
Russian Federation
Olga V. Khlynova — Doctor of Sciences (Medicine), Professor, Corresponding Member of the Russian Academy
of Sciences, Head of the Department of Hospital Therapy and Cardiology
Perm
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest.
References
1. Minnig MC, Golightly YM, Nelson AE. Epidemiology of osteoarthritis: Literature update 2022–2023. Current Opinion in Rheumatology. 2024;36(2):108–112. DOI: https://doi.org/10.1097/BOR.0000000000000985.
2. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. The Lancet Rheumatology. 2023;5(9): e508–e822. DOI: https://doi.org/10.1016/S2665-9913(23)00163-7.
3. Plotnikova PA, Pavlova VN. Osteoarthritis: Aspects of epidemiology, etiology, prognosis. Science Alley. 2021;12(63):384–387. (In Russ.). EDN: https://elibrary.ru/uugwsi.
4. Kabalyk MA. Prevalence of osteoarthritis in Russia: Regional aspects of trends in statistical parameters during 2011–2016. Rheumatology Science and Practice. 2018;56(4):416–422. (In Russ.). EDN: https://www.elibrary.ru/xybwcl.
5. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. The Lancet. 2019;393(10182):1745–1759. DOI: https://doi.org/10.1016/S0140–6736(19)30417–9.
6. Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C. Knee osteoarthritis: Epidemiology, pathogenesis, and mesenchymal stem cells: What else is new? An Update. International Journal of Molecular Sciences. 2023;24(7):6405. DOI: https://doi.org/10.3390/ijms24076405.
7. Geng R, Li J, Yu C, Zhang C, Chen F, Chen J, et al. Knee osteoarthritis: Current status and research progress in treatment (Review). Experimental and Therapeutic Medicine. 2023;26(4):481. DOI: https://doi.org/10.3892/etm.2023.12180.
8. Mazurov VI, Trofimova AS, Trofimov EA. Risk factors and some aspects of the pathogenesis of osteoarthritis. North-Western State Medical University named after I.I. Mechnikov. 2016;8(2):116–124. (In Russ.). EDN: https://elibrary.ru/wlsqzr.
9. Georgiev T, Angelov AK. Modifiable risk factors in knee osteoarthritis: Treatment implications. Rheumatology International. 2019;39(7):1145–1157. DOI: https://doi.org/10.1007/s00296-019-04290-z.
10. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, et al. Osteoarthritis: New insights. Part 1: The disease and its risk factors. Annals of Internal Medicine. 2000;133(8):635–646. DOI: https://doi.org/10.7326/0003-4819-133-8-200010170-00016.
11. Voronina NV, Markina OI, Zhmerenetskii KV, Zharskiy SL, Fedorchenko YL, Davidovich IM, et al. Increase of safety of nonsteroid anti-inflammatory preparations in treatment of osteoarthritis in elderly patients. Russian Journal of Preventive Medicine. 2018;21(6):106–110. (In Russ.). DOI: https://doi.org/10.17116/profmed201821061106.
12. Taskina EA, Kashevarova NG, Alekseeva LI. The place of nonsteroidal anti-inflammatory drugs in the current osteoarthritis guidelines. Modern Rheumatology Journal. 2020;14(2):123–130. (In Russ.). DOI: https://doi.org/10.14412/1996-7012-2020-2-123-130.
13. Karateev AE. Nonsteroidal anti-inflammatory drugs in the practice of a therapist. Therapy. 2024;1:138–148. (In Russ.). DOI: https://doi.org/10.18565/therapy.2024.1.138-148.
14. Roelofs AJ, De Bari C. Osteoarthritis year in review 2023: Biology. Osteoarthritis and Cartilage. 2024; 32(2):148–158. DOI: https://doi.org/10.1016/j.joca.2023.11.002.
15. Terkawi MA, Ebata T, Yokota S, Takahashi D, Endo T, Matsumae G, et al. Low-grade inflammation in the pathogenesis of osteoarthritis: Cellular and molecular mechanisms and strategies for future therapeutic intervention. Biomedicines. 2022;10(5):1109. DOI: https://doi.org/10.3390/biomedicines10051109.
16. De Roover A, Escribano-Nunez A, Monteagudo S, Lories R. Fundamentals of osteoarthritis: Inflammatory mediators in osteoarthritis. Osteoarthritis and Cartilage. 2023;31(10):1303–1311. DOI: https://doi.org/10.1016/j.joca.2023.06.005.
17. Luyten FP, Bierma-Zeinstra S, Dell’Accio F, Kraus VB, Nakata K, Sekiya I, et al. Toward classification criteria for early osteoarthritis of the knee. Seminars in Arthritis and Rheumatism. 2018;47(4):457–463. DOI: https://doi.org/10.1016/j.semarthrit.2017.08.006.
18. Макаrоvа MV, Prоklоvа LV, Yavorskaya GV, Yunitcina AV, Yakobi AY, Valkov MYu. How data of ultrasound examination for x-ray 0 stage gonarthritis may be objective. Diagnostic Radiology and Radiotherapy. 2017;(4):60–67. (In Russ.). DOI: https://doi.org/10.22328/2079-5343-2017-4-60-67.
19. Kabalyk MA. The possibilities of magnetic resonance imaging in the diagnosis of microstructural changes in articular cartilage in osteoarthritis. Perm Medical Journal. 2018;35(3):15–23. (In Russ.). DOI: https://doi.org/10.17816/pmj35315-23.
20. Piccolo CL, Mallio CA, Vaccarino F, Grasso RF, Zobel BB. Imaging of knee osteoarthritis: A review of multimodal diagnostic approach. Quantitative Imaging in Medicine and Surgery. 2023;13(11):7582–7595. DOI: https://doi.org/10.21037/qims-22-1392.
21. D’Agostino V, Sorriento A, Cafarelli A, Donati D, Papalexis N, Russo A, et al. Ultrasound imaging in knee osteoarthritis: Current role, recent advancements, and future perspectives. Journal of Clinical Medicine. 2024;13(16):4930. DOI: https://doi.org/10.3390/jcm13164930.
22. Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: A systematic search and summary of the literature. BMC Musculoskeletal Disorders. 2008;9:116. DOI: https://doi.org/10.1186/1471-2474-9-116.
23. Identeg F, Senorski EH, Svantesson E, Samuelsson K, Sernert N, Kartus JT, et al. Poor associations between radiographic tibiofemoral osteoarthritis and patient-reported outcomes at 16 years after anterior cruciate ligament reconstruction. Orthopaedic Journal of Sports Medicine. 2020;8(9):2325967120951174. DOI: https://doi.org/10.1177/2325967120951174.
24. Guermazi A, Roemer FW, Jarraya M, Hayashi D. A call for screening MRI as a tool for osteoarthritis clinical trials. Skeletal Radiology. 2023;52(11):2011–2019. DOI: https://doi.org/10.1007/s00256-023-04354-z.
25. Vargas E Silva NCO, Dos Anjos RL, Santana MMC, Battistella LR, Marcon Alfieri F. Discordance between radiographic findings, pain, and superficial temperature in knee osteoarthritis. Reumatologia. 2020; 58(6):375–380. DOI: https://doi.org/10.5114/reum.2020.102002.
26. Langworthy M, Dasa V, Spitzer AI. Knee osteoarthritis: Disease burden, available treatments, and emerging options. Therapeutic Advances in Musculoskeletal Disease. 2024;16:1759720X241273009. DOI: https://doi.org/10.1177/1759720X241273009.
27. Jiang T, Lau SH, Zhang J, Chan LC, Wang W, Chan PK, et al. Radiomics signature of osteoarthritis: Current status and perspective. Journal of Orthopaedic Translation. 2024;45:100–106. DOI: https://doi.org/10.1016/j.jot.2023.10.003.
28. Shao Z, Liang Z, Hu P, Bi S. A nomogram based on radiological features of MRI for predicting the risk of severe pain in patients with osteoarthritis of the knee. Frontiers in Surgery. 2023;10:1030164. DOI: https://doi.org/10.3389/fsurg.2023.1030164.
29. Luyten FP, Denti M, Filardo G, Kon E, Engebretsen L. Definition and classification of early osteoarthritis of the knee. Knee Surgery, Sports Traumatology, Arthroscopy. 2012;20(3):401–406. DOI: https://doi.org/10.1007/s00167-011-1743-2.
30. Zhang H, Ning E, Lu L, Zhou J, Shao Z, Yang X, et al. Research progress of ultrasound in accurate evaluation of cartilage injury in osteoarthritis. Frontiers in Endocrinology. 2024;15:1420049. DOI: https://doi.org/10.3389/fendo.2024.1420049.
31. Saito M, Ito H, Okahata A, Furu M, Nishitani K, Kuriyama S, et al. Ultrasonographic changes of the knee joint reflect symptoms of early knee osteoarthritis in general population; The Nagahama Study. Cartilage. 2022;13(1):19476035221077403. DOI: https://doi.org/10.1177/19476035221077403.
32. Eftekharsadat B, Khakbiz S, Badali A, Nasiri E, Babaei-Ghazani A. Diagnostic value of ultrasonography in knee osteoarthritis: A systematic review. Journal of Research in Medical Sciences. 2024;29(1):39. DOI: https://doi.org/10.4103/jrms.jrms_489_23.
33. Makarova MV, Agapitov AV, Yunitsyna AV, Yakobi AY, Valkov M. Ultrasound sonography and magnetic resonance imaging in the detection of degenerative changes of x-ray negative osteoarthritis of the knee. Journal of New Medical Technologies. eJournal. 2014;(1):100. (In Russ.). EDN: https://www.elibrary.ru/tjbhtt.
34. Podlipska J, Guermazi A, Lehenkari P. Comparison of diagnostic performance of semi-quantitative knee ultrasound and knee radiography with MRI: Oulu Knee Osteoarthritis Study. Scientific Reports. 2006; 6(1):22365. DOI: https://doi.org/10.1038/srep22365.
35. Kahan A, Uebelhart D, De Vathaire F, Delmas PD, Reginster JY. Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: The study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis & Rheumatism. 2009;60(2):524–533. DOI: https://doi.org/10.1002/art.24255.
36. Reginster JY, Deroisy R, Rovati LC. Long-term effects of glucosamine sulphate on osteoarthritis progression: A randomised, placebo-controlled clinical trial. The Lancet. 2001;357(9252):251–256. DOI: https://doi.org/10.1016/S0140-6736(00)03610-2.
Supplementary files
Review
For citations:
Arshin EV, Gorshkov DA, Radoshchekin MA, Khlynova OV. Substantiation of the Preclinical Stage of Gonarthritis. Prospects for Early Chondroprotective Therapy. Ural Medical Journal. 2025;24(1):39–49. (In Russ.) https://doi.org/10.52420/umj.24.1.39. EDN: EGZFLT