The Effect of Autophagy Modeling in Stem Cells on the Regeneration of Myeloid Tissue in Mice after Their Sublethal Irradiation
https://doi.org/10.52420/umj.24.2.56
EDN: FRAAMD
Abstract
Introduction. Acute radiation disease is one of the urgent problems of modern medicine. The new approach using mesenchymal stem cells (MSCs) show its effectiveness. Results of MSC therapy is contradictory and requires further researches to assess the production of hematopoiesis-inducing growth factors and the level of hematopoiesis activation.
The purpose of the study was modeling of autophagy process with estimation of the degree of hematopoiesis restoration using modulated MSCs.
Materials and methods. The experiment was carried out on 60 outbred mice. Animals were exposed to ionizing radiation (IR) with transplantation of modulated and unmodulated MSCs to analyze reticulocyte, leukocyte formula, bone marrow with myelogram counting and enzyme immunoassay. Statistical analysis was performed using IBM SPSS Statistics 27 program.
Results and discussion. After IR exposure, a decreased in lymphoid (–45.0 %), neutrophilic (–19.5 %) and megakaryocyte lineages (–52.2 %) was noted. Expression of SCF and Flt3-ligand was higher in the MSC + trehalose group compared to rapamycin by 16.3 % and 19.7 %. Using MSCs increased bone marrow cellularity by +11.1 % due to neutrophilic and lymphoid cells. MSC with activated mTOR-independent autophagy increased in bone marrow cellularity among the studied groups: lymphocytes +12.9 %, megakaryocytes +15.2 %. Inhibition of autophagy in MSC decreased numbers of myelokaryocytes (–8.7 %), neutrophilic (–14.5 %) and lymphoid (–9.8 %) cells.
Conclusion. The use of MSCs with activated mTOR-independent autophagy has a greater therapeutic potential in the restoration of hematopoiesis. Inhibition of autophagy in MSCs worsens their biological properties in terms of growth factor production and myeloid tissue regeneration after IR exposure.
About the Authors
V. A. IvanovRussian Federation
Vladislav A. Ivanov — Postgraduate Student of the Department of Pathologic Physiology, Institute of Fundamental Medicine, Ural SMU; Therapist of the Therapeutic Department No. 11, Sverdlovsk Regional Clinical Neuropsychiatric Hospital for War Veterans.
Ekaterinburg
Competing Interests:
The other authors declare the absence of obvious or potential conflicts of interest
D. Yu. Grebnev
Russian Federation
Dmitry Y. Grebnev — Doctor of Sciences (Medicine), Associate Professor, Head of the Department of Pathological Physiology, Institute of Fundamental Medicine, Ural SMU; Senior Researcher of the Laboratory of Anti‑Aging Technologies, Institute of Medical Cell Technologies.
Ekaterinburg
Competing Interests:
are an editorial board members
I. Yu. Maklakova
Russian Federation
Irina Y. Maklakova — Doctor of Sciences (Medicine), Associate Professor, Head of the Department of Normal Physiology, Institute of Fundamental Medicine, Ural SMU; Senior Researcher of the Laboratory of Anti‑Aging Technologies, Institute of Medical Cell Technologies.
Ekaterinburg
Competing Interests:
is an editorial council member of Ural Medical Journal, and they did not participate in reviewing the material or making a decision about its publication
V. V. Bazarnyi
Russian Federation
Vladimir V. Bazarnyi — Doctor of Sciences (Medicine), Professor, Professor of the Department of Pathological Physiology, Chief Researcher of the Department of General Pathology of the Central Research Laboratory, Director of the Institute of Fundamental Medicine, Ural SMU.
Ekaterinburg
Competing Interests:
are an editorial board members
L. G. Polushina
Russian Federation
Larisa G. Polushina — Candidate of Sciences (Medicine), Senior Researcher of the Department of General Pathology of the Central Research Laboratory, Institute of Fundamental Medicine.
Ekaterinburg
Competing Interests:
The other authors declare the absence of obvious or potential conflicts of interest
References
1. Jones JA, Karouia F, Cristea O, Casey RC, Popov D, Maliev V. Ionizing radiation as a carcinogen. In: Comprehensive toxicology. 3rd ed. Elsevier Science; 2018. P. 183–225. DOI: https://doi.org/10.1016/B978-0-12801238-3.64295-2.
2. Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, et al. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxidants & Redox Signaling. 2014;21(2):338–355. DOI: https://doi.org/10.1089/ars.2013.5652.
3. Puckett Y, Al-Naser YA, Nappe TM. Ionizing radiation. In: StatPearls. Treasure Island: StatPearls Publishing. PMID: https://pubmed.gov/30480970.
4. Fukumoto R. Mesenchymal stem cell therapy for acute radiation syndrome. Military Medical Research. 2016;3:17. DOI: https://doi.org/10.1186/s40779-016-0086-1.
5. Friedenstein J, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230–247. DOI: https://doi.org/10.1097/00007890-196803000-00009.
6. Deans J, Moseley AB. Mesenchymal stem cells: Biology and potential clinical uses. Experimental Hematology. 2000;28(8):875–884. DOI: https://doi.org/10.1016/s0301-472x(00)00482-3.
7. El-Naseery NI, Elewa YHA, El-Behery EI, Dessouky AA. Human umbilical cord blood-derived mesenchymal stem cells restored hematopoiesis by improving radiation induced bone marrow niche remodeling in rats. Annals of Anatomy — Anatomischer Anzeiger. 2023;250:152131. DOI: https://doi.org/10.1016/j.aanat.2023.152131.
8. Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Research & Therapy. 2020;11(1):519. DOI: https://doi.org/10.1186/s13287-020-02011-z.
9. Dehnavi S, Sadeghi M, Tavakol Afshari J, Mohammadi M. Interactions of mesenchymal stromal/stem cells and immune cells following MSC-based therapeutic approaches in rheumatoid arthritis. Cell Immunology. 2023;393–394:104771. DOI: https://doi.org/10.1016/j.cellimm.2023.104771.
10. Sarıkaya A, Aydın G, Özyüncü Ö, Şahin E, Uçkan-Çetinkaya D, Aerts-Kaya F. Comparison of immune modulatory properties of human multipotent mesenchymal stromal cells derived from bone marrow and placenta. Biotechnic & Histochemistry. 2022;97(2):79–89. DOI: https://doi.org/10.1080/10520295.2021.1885739.
11. Arki MK, Moeinabadi-Bidgoli K, Niknam B, Mohammadi P, Hassan M, Hossein-Khannazer N, et al. Immunomodulatory performance of GMP-compliant, clinical-grade mesenchymal stromal cells from four different sources. Heliyon. 2024;10(2):e24948. DOI: https://doi.org/10.1016/j.heliyon.2024.e24948.
12. Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B. Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta. 2017;59:87–95. DOI: https://doi.org/10.1016/j.placenta.2017.04.003.
13. Mathew SA, Naik C, Cahill PA, Bhonde RR. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cellular and Molecular Life Sciences. 2020;77(2):253–265. DOI: https://doi.org/10.1007/s00018-019-03268-1.
14. Maklakova IYu, Yastrebov AP, Grebnev D Yu. Changing of the morphometric and cytological indexes of the spleen in the condition of acute blood loss on the background of stem cells insertion. Uspekhi gerontologii. 2015;28(2):218–221. (In Russ.). EDN: https://elibrary.ru/UDENCH.
15. Grebnev DYu, Maklakova IYu, Yastrebov AP. The effect of different doses of HSC during combined transplantation with MSC on the regeneration of myeloid tissue after exposure to ionizing radiation. Journal of Ural Medical Academic Science. 2014;(5):73–75. (In Russ.). EDN: https://www.elibrary.ru/TKZMWB.
16. Grebnev DYu, Yastrebov AP, Maklakova IYu. Changes in the morphometric parameters of the spleen of old laboratory animals after exposure to ionizing radiation on the background of stem cell transplantation. Kazan Medical Journal. 2013;94(6):911–914. (In Russ.). DOI: https://doi.org/10.17816/KMJ1818.
17. Maklakova IYu, Grebnev DYu, Osipenko AV. Influence of combined transplantation of multipotent mesenchymal stromal cells and stellate liver cells on its morphofunctional state after partial hepatectomy. Ural Medical Journal. 2021;20(1):16–22. (In Russ.). DOI: https://doi.org/10.52420/2071-5943-2021-20-1-16-22.
18. Azarbarz N, Nejaddehbashi F, Khorsandi L, Bijan Nejad D, Sayyahi A. Autophagy enhances the differentiation of insulin-producing cells from Wharton’s jelly-derived mesenchymal stem cells. Tissue and Cell. 2024;88:102384. DOI: https://doi.org/10.1016/j.tice.2024.102384.
19. Verma J, Rai AK, Satija NK. Autophagy perturbation upon acute pyrethroid treatment impacts adipogenic commitment of mesenchymal stem cells. Pesticide Biochemistry and Physiology. 2023;195:105566. DOI: https://doi.org/10.1016/j.pestbp.2023.105566.
20. Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: Regulator of cell death. Cell Death & Disease. 2023; 14(10):648. DOI: https://doi.org/10.1038/s41419-023-06154-8.
21. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, et al. Autophagy in major human diseases. The EMBO Journal. 2021;40(19):e108863. DOI: https://doi.org/10.15252/embj.2021108863.
22. Molaei S, Roudkenar MH, Amiri F, Harati MD, Bahadori M, Jaleh F, et al. Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions. Blood Research. 2015;50(2):80–86. DOI: https://doi.org/10.5045/br.2015.50.2.80.
23. Gao L, Cen S, Wang P, Xie Z, Liu Z, Deng W, et al. Autophagy improves the immunosuppression of CD4+ T cells by mesenchymal stem cells through transforming growth factor-β1. Stem Cells Translational Medicine. 2016;5(11):1496–1505. DOI: https://doi.org/10.5966/sctm.2015–0420.
24. Kim KW, Moon SJ, Park MJ, Kim BM, Kim EK, Lee SH, et al. Optimization of adipose tissue-derived mesenchymal stem cells by rapamycin in a murine model of acute graft-versus-host disease. Stem Cell Research & Therapy. 2015;6:202. DOI: https://doi.org/10.1186/s13287-015-0197–8. Erratum in: Stem Cell Research & Therapy. 2016;7(1):80. DOI: https://doi.org/10.1186/s13287-016-0336-x.
25. Dang S, Yu ZM, Zhang CY, Zheng J, Li KL, Wu Y, et al. Autophagy promotes apoptosis of mesenchymal stem cells under inflammatory microenvironment. Stem Cell Research & Therapy. 2015;6:247. DOI: https://doi.org/10.1186/s13287-015-0245-4.
26. Chen X, Li M, Li L, Xu S, Huang D, Ju M, et al. Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway. Scientific Reports. 2016;6:28423. DOI: https://doi.org/10.1038/srep28423.
27. Kim JS, Jang WS, Lee S, Son Y, Park S, Lee SS. A study of the effect of sequential injection of 5-androstenediol on irradiation-induced myelosuppression in mice. Archives of Pharmacal Research. 2015;38(6):1213–1222. DOI: https://doi.org/10.1007/s12272-014-0483-5.
28. Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. Journal of Pharmacology & Pharmacotherapeutics. 2010;1(2):87–93. DOI: https://doi.org/10.4103/0976-500X.72350.
29. Yu H, Zhang T, Lu H, Ma Q, Zhao D, Sun J, et al. Granulocyte colony-stimulating factor (G-CSF) mediates bone resorption in periodontitis. BMC Oral Health. 2021;21(1):299. DOI: https://doi.org/10.1186/s12903021-01658-1.
30. Durandt C, van Vollenstee FA, Dessels C, Kallmeyer K, de Villiers D, Murdoch C, et al. Novel flow cytometric approach for the detection of adipocyte subpopulations during adipogenesis. Journal of Lipid Research. 2016;57(4):729–742. DOI: https://doi.org/10.1194/jlr.D065664.
31. Chinnadurai R, Forsberg MH, Kink JA, Hematti P, Capitini CM. Use of MSCs and MSC-educated macrophages to mitigate hematopoietic acute radiation syndrome. Current Stem Cell Reports. 2020;6(3):77–85. DOI: https://doi.org/10.1007/s40778-020-00176-0.
32. Schroeder T. Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior. Cell Stem Cell. 2010;6(3):203–207. DOI: https://doi.org/10.1016/j.stem.2010.02.006.
33. Du J, He H, Li Z, He J, Bai Z, Liu B, et al. Integrative transcriptomic analysis of developing hematopoietic stem cells in human and mouse at single-cell resolution. Biochemical and Biophysical Research Communications. 2021;558:161–167. DOI: https://doi.org/10.1016/j.bbrc.2021.04.058.
34. Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 2015;16(6):712–724. DOI: https://doi.org/10.1016/j.stem.2015.04.004.
35. Kostjunina VS, Petyovka NV, Potapnev MP. Different expression of hematopoietic-supporting genes in cord, placental and bone marrow mesenchymal stromal cells. Genes & Cells. 2015;10(1):61–68. (In Russ.). DOI: https://doi.org/10.23868/gc120484.
36. Lamark T, Johansen T. Aggrephagy: Selective disposal of protein aggregates by macroautophagy. International Journal of Cell Biology. 2012;2012:736905. DOI: https://doi.org/10.1155/2012/736905.
37. de la Cruz López KG, Toledo Guzmán ME, Sánchez EO, García Carrancá A. mTORC1 as a regulator of mitochondrial functions and a therapeutic target in cancer. Frontiers in Oncology. 2019;9:1373. DOI: https://doi.org/10.3389/fonc.2019.01373.
Review
For citations:
Ivanov VA, Grebnev DY, Maklakova IY, Bazarnyi VV, Polushina LG. The Effect of Autophagy Modeling in Stem Cells on the Regeneration of Myeloid Tissue in Mice after Their Sublethal Irradiation. Ural Medical Journal. 2025;24(2):56–70. (In Russ.) https://doi.org/10.52420/umj.24.2.56. EDN: FRAAMD