Preview

Уральский медицинский журнал

Расширенный поиск

Роль генного полиморфизма коморбидной патологии в формировании осложнений при травмах костей нижних конечностей

https://doi.org/10.52420/umj.24.6.103

EDN: FEROTO

Аннотация

Причины и виды осложнений в травматологии и ортопедии после консервативного и хирургического лечения при наличии коморбидной патологии всегда привлекают к себе внимание специалистов. Таким образом, поставлена цель – проанализировать и систематизировать данные современной литературы о влиянии полиморфизма генов и сопутствующей патологии на развитие осложнений при лечении травм костей нижних конечностей. В ходе обзора определено, что осложнения в травматологии обусловлены как методами лечения, так и наличием у пациентов коморбидных состояний. Установлено, что полиморфизм определенных генов может оказывать влияние на процесс заживления переломов и общее течение посттравматического периода. В работе выделены гены, ассоциированные с нарушениями соединительной ткани, в т. ч. Коллагенопатиями и ревматическими заболеваниями, такие как HLA-DR4, HLA-DRB1, COL1A1 и COL1A2. Также рассмотрены генетические маркеры, связанные с риском развития сахарного диабета 1-го типа (SOD2, GAD1), артериальной гипертензии (GRK, PLCG2), нарушений метаболизма витамина D (VDR, GC, CYP27B1) и тромбоэмболических осложнений (FGB). Несмотря на выявление множества генов, потенциально влияющих на возникновение осложнений, мы пришли к выводу, что в настоящее время убедительные доказательства существования закономерной генетической предрасположенности отсутствуют, что требует дальнейших глубоких исследований в этом направлении.

Об авторах

В. В. Савгачев
Ярославский государственный медицинский университет
Россия

Виталий Владимирович Савгачев – кандидат медицинских наук, доцент кафедры травматологии и ортопедии

Ярославль


Конфликт интересов:

Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов.



Л. Б. Шубин
Ярославский государственный медицинский университет
Россия

Леонид Борисович Шубин – кандидат медицинских наук, доцент кафедры общественного здоровья и здравоохранения

Ярославль


Конфликт интересов:

Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов.



Список литературы

1. Fomin KN, Belenky IG, Sergeev GD, Majorov BA. Treatment strategy for patients with bone trauma and deep vein thrombosis of lower extremities (literature review). Modern Problems of Science and Education. 2022;(5):130. (In Russ.). DOI: https://doi.org/10.17513/spno.31976.

2. Savgachev VV. The significance of the PPARG gene in the recurrence of purulent complications after lower limb bone injury treatment. Patient-Oriented Medicine and Pharmacy. 2025;3(2):36–41. (In Russ.). DOI: https://doi.org/10.37489/2949-1924-0088.

3. Kishenya MS, Sobolev DV, Anchikova EV, Visyagin AV. Genetic predictors of the risk of developing complications in the immediate postoperative period following combat trauma. Molecular Medicine. 2024; 22(2):48–53. (In Russ.) DOI: https://doi.org/10.29296/24999490-2024-02-08.

4. De la Vega RE, Atasoy-Zeybek A, Panos JA, van Griensven M, Evans CH, Balmayor ER. Gene therapy for bone healing: Lessons learned and new approaches. Translational Research. 2021;236:1–16. DOI: https://doi.org/10.1016/j.trsl.2021.04.009.

5. Kahlke V, Schafmayer C, Schniewind B, Seegert D, Schreiber S, Schröder J. Are postoperative complications genetically determined by TNF-beta NcoI gene polymorphism? Surgery. 2014;135(4):365–373. DOI: https://doi.org/10.1016/j.surg.2003.08.012.

6. Wang Y, Chen W, Zhao L, Li Y, Liu Z, Gao H, et al. Obesity regulates miR‑467/HoxA10 axis on osteogenic differentiation and fracture healing by BMSC-derived exosome LncRNA H19. Journal of Cellular and Molecular Medicine. 2021;25(3):1712–1724. DOI: https://doi.org/10.1111/jcmm.16273.

7. Ranjbarnejad F, Khazaei M, Shahryari A, Khazaei F, Rezakhani L. Recent advances in gene therapy for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 2022;16(12):1121–1137. DOI: https://doi.org/10.1002/term.3363.

8. Kuchina SN, Spivak IM, Shchegolev AV, Levshankov AI. The role of genetic and epigenetic factors on the development of cognitive deficits in patients with severe trauma after repeated anesthesia (literature review). Messenger of Anesthesiology and Resuscitation. 2024;21(4):124–131. (In Russ.). DOI: https://doi.org/10.24884/2078-5658-2024-21-4-124-131.

9. Borshchevskaya VN, Kopylov A, Kolomoets IA, Sasko SS, Bachurin SS, Berezovsky DP. Morphological characteristics of the vascular-capillary bed of soft tissues in the fracture region of long tubular bones depending on the carriage of single-nucleotide polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene. Medical News of the North Caucasus. 2023;18(3):299–303. (In Russ.). DOI: https://doi.org/10.14300/mnnc.2023.18070.

10. Leonov DV, Ustinov EM, Derevyannaya VO, Kislitsky VM, Samsonova SK, Alatortseva ME, et al. Genetic polymorphism: Significance and research methods. Amur Medical Journal. 2017;(2):62–67. (In Russ.). EDN: https://elibrary.ru/ZDWNFB.

11. Theis V, Theiss C. VEGF — a stimulus for neuronal development and regeneration in the CNS and PNS. Current Protein & Peptide Science. 2018;19(6):589–597. DOI: https://doi.org/10.2174/1389203719666180104113937.

12. Peters MJ. Association of gene polymorphisms with fracture healing in lower limb injuries. Bone Reports. 2022;16(Suppl):101359. DOI: https://doi.org/10.1016/j.bonr.2022.101359.

13. Guo FQ, Deng M. Correlation between steroid-induced osteonecrosis of the femoral head and hepatic CYP3A activity: A systematic review and meta-analysis. Journal of Investigative Surgery. 2019;32(2):118–126. DOI: https://doi.org/10.1080/08941939.2017.1385663.

14. Samad-Zadeh RRO. An analysis of osteosynthesis complications of long bone diaphyseal fractures in patients with polytraumas. University proceedings. Volga region. Medical sciences. 2022;(2):64–73. DOI: https://doi.org/10.21685/2072-3032-2022-2-7.

15. Zamyatin MN, Stoyko YM, Vorobev AV. Prevention of venous thrombosis in inpatient patients. Consilium Medicum. 2006;8(11):95–100. (In Russ.). EDN: https://elibrary.ru/WLGICP.

16. Selvaraj V, Sekaran S, Dhanasekaran A, Warrier S. Type 1 collagen: Synthesis, structure and key functions in bone mineralization. Differentiation. 2024;136:100757. DOI: https://doi.org/10.1016/j.diff.2024.100757.

17. Hendrickx JO, van Gastel J, Leysen H, Santos-Otte P, Premont RT, Martin B, et al. GRK5 — a functional bridge between cardiovascular and neurodegenerative disorders. Frontiers in Pharmacology. 2018;9:1484. DOI: https://doi.org/10.3389/fphar.2018.01484.

18. Bizzari S, Nair P, Al Ali MT, Hamzeh AR. Meta-analyses of the association of HLA-DRB1 alleles with rheumatoid arthritis among Arabs. International Journal of Rheumatic Diseases. 2017;20(7):832–838. DOI: https://doi.org/10.1111/1756–185X.12922.

19. Miyachi Y, Miyazawa T, Ogawa Y. HNF1A mutations and beta cell dysfunction in diabetes. International Journal of Molecular Sciences. 2022;23(6):3222. DOI: https://doi.org/10.3390/ijms23063222.

20. Love-Gregory L, Permutt MA. HNF4A genetic variants: Role in diabetes. Current Opinion in Clinical Nutrition & Metabolic Care. 2007;10(4):397–402. DOI: https://doi.org/10.1097/MCO.0b013e3281e3888d.

21. Samarin MA, Asi Habiballah ZA, Krivova AV, Rodionova SS, Solomynnik IA. Epidemiology of fractures of the proximal femur in people older than 50 years: What has changed in the last 30 years? N. N. Priorov Journal of Traumatology and Orthopedics. 2022;29(2):181–191. (In Russ.). DOI: https://doi.org/10.17816/vto109748.

22. Jia Z, Liu J, Wang J. circRNA-MSR regulates the expression of FBXO21 to inhibit chondrocyte autophagy by targeting miR‑761 in osteoarthritis. The Kaohsiung Journal of Medical Sciences. 2022;38(12):1168–1177. DOI: https://doi.org/10.1002/kjm2.12604.

23. Stashkevich DS, Khromova EB, Devald IV, Khodus EA, Filippova YY, Burmistrova AL. Class II TNFA-HLA haplotypes as predictive markers of rheumatoid arthritis. South Ural Medical Journal. 2022;(1):95–104. (In Russ.). EDN: https://elibrary.ru/MQPODC.

24. Tanaka Y. Rheumatoid arthritis. Inflammation and Regeneration. 2020;40:20. DOI: https://doi.org/10.1186/s41232-020-00133-8.

25. Breidert M, Eftekhari P, Louis F, Rotoiu C, Rath T, Neurath MF, et al. Functional molecular network analysis enables prediction of response to vedolizumab therapy in anti-TNF refractory IBD patients. Crohn’s & Colitis 360. 2020;2(2):otaa37. DOI: https://doi.org/10.1093/crocol/otaa037.

26. Marin Rubio LA, Rada R, Ontañon J. New HLA-DQB1 intronic variants detected by next-generation sequencing. HLA. 2022;99(6):669–670. DOI: https://doi.org/10.1111/tan.14567.

27. Chu CS, Chu CL, Liang CK, Lu T, Lin YT, Chou MY, et al. Association between polymorphisms in dopamine-related genes and orthopedic pain expression in a Chinese elderly population. Pain Practice. 2019; 19(2):211–221. DOI: https://doi.org/10.1111/papr.12737.

28. Miromanov AM, Gusev KA, Staroselnikov AN, Mironova OB. Modern genetic and immunological aspects of fracture consolidation disorders pathogenesis (literature review). Acta Biomedica Scientifica. 2022; 7(2):49–64. (In Russ.). DOI: https://doi.org/10.29413/ABS.2022-7.2.6.

29. Poryadin GV, Eremin DA, Khelminskaya NM, Kravets VI, Zhitareva IV, Posadskaya AV, et al. Efficacy of the jawbone defect elimination. Bulletin of RSMU. 2023;(6):97–101. DOI: https://doi.org/10.24075/vrgmu.2023.044.

30. Dong W, Jia C, Li J, Zhou Y, Luo Y, Liu J, et al. Fisetin attenuates diabetic nephropathy-induced podocyte injury by inhibiting NLRP3 inflammasome. Frontiers in Pharmacology. 2022;13:783706. DOI: https://doi.org/10.3389/fphar.2022.783706.

31. Borysewicz-Sańczyk H, Sawicka B, Wawrusiewicz-Kurylonek N, Głowińska-Olszewska B, Kadłubiska A, Gościk J, et al. Genetic association study of IL2RA, IFIH1, and CTLA‑4 polymorphisms with autoimmune thyroid diseases and type 1 diabetes. Frontiers in Pediatrics. 2020;8:481. DOI: https://doi.org/10.3389/fped.2020.00481.

32. Khomynets VV, Shchukin AV, Mykhailov SV, Shakun DA, Endovitskay MV, Zacharov MV. Treatment of the low extremity severe mechanical injury with uncompensated ischemia (case report). Traumatology and Orthopedics of Russia. 2020;26(1):153–163. (In Russ.). DOI: https://doi.org/10.21823/2311-2905-2020-26-1-153-163.

33. Johnson GC, Payne F, Nutland S, Stevens H, Tuomilehto-Wolf E, Tuomilehto J, et al. A comprehensive, statistically powered analysis of GAD2 in type 1 diabetes. Diabetes. 2002;51(9):2866–2870. DOI: https://doi.org/10.2337/diabetes.51.9.2866.

34. Zurawek M, Dzikiewicz-Krawczyk A, Izykowska K, Ziolkowska-Suchanek I, Skowronska B, Czainska M, et al. miR‑487a‑3p upregulated in type 1 diabetes targets CTLA4 and FOXO3. Diabetes Research and Clinical Practice. 2018;142:146–153. DOI: https://doi.org/10.1016/j.diabres.2018.05.044.

35. Tsai AP, Dong C, Lin PB, Messenger EJ, Casali BT, Moutinho M, et al. PLCG2 is associated with the inflammatory response and is induced by amyloid plaques in Alzheimer’s disease. Genome Medicine. 2022; 14(1):17. DOI: https://doi.org/10.1186/s13073-022-01022-0.

36. Zelenskaya EM, Lifshits GI. Genetic markers of vitamin D metabolism and approaches to hypovitaminosis correction in adults. Siberian Medical Review. 2018;(6):5–11. (In Russ.). DOI: https://doi.org/10.20333/2500136-2018-6-5-11.

37. Yang R, Chen J, Zhang J, Qin R, Wang R, Qiu Y, et al. 1,25‑Dihydroxyvitamin D protects against age-related osteoporosis by a novel VDR-Ezh2‑p16 signal axis. Aging Cell. 2020;19(2): e13095. DOI: https://doi.org/10.1111/acel.13095.

38. Volkov E, Goloshchapov A, Mustafin R, Nostaeva S. Factor analysis of clinical and biochemical parameters of bone remodeling changes associated with leading VDR polymorphisms in patients with aseptic necrosis of the femoral head. Genij Ortopedii. 2023;29(1):57–63. (In Russ., Eng.). DOI: https://doi.org/10.18019/1028-4427-2023-29-1-57-63.

39. Cui J, Shibata Y, Zhu T, Zhou J, Zhang J. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Research Reviews. 2022;77:101608. DOI: https://doi.org/10.1016/j.arr.2022.101608.

40. Trajanoska K, Morris JA, Oei L, Zheng HF, Evans DM, Kiel DP, et al.; GEFOS/GENOMOS consortium and the 23andMe research team. Assessment of the genetic and clinical determinants of fracture risk: Genome wide association and mendelian randomisation study. BMJ. 2018;362:k3225. DOI: https://doi.org/10.1136/bmj.k3225.

41. Komarova LN, Kiseleva MA, Nabieva KU, Brutskaya NV. Acute thrombosis of the femoral-popliteal segment, complicated by PE. Description of the clinical case. Meditsinskaya nauka i obrazovanie Urala. 2021; 22(4):89–93. (In Russ.). DOI: https://doi.org/10.36361/1814-8999-2021-22-4-89-93.

42. Peregud DI, Baronets VYu, Lobacheva AS, Ivanov AS, Garmash IV, Arisheva OS, et al. IL6 rs1800795 SNP may relate to cardiovascular pathology in alcohol abusers. Medical Genetics. 2021;20(4):30–42. (In Russ.). DOI: https://doi.org/10.25557/2073-7998.2021.04.30-42.

43. Padda J, Khalid K, Mohan A, Pokhriyal S, Batra N, Hitawala G, et al. Factor V Leiden G1691A and prothrombin gene G20210A mutations on pregnancy outcome. Cureus. 2021;13(8):e17185. DOI: https://doi.org/10.7759/cureus.17185.

44. Tkachuk EA, Seminsky IZh. Methods of modern genetics. Baikal Medical Journal. 2023;2(1):60–71. (In Russ.). DOI: https://doi.org/10.57256/2949-0715-2023-1-60-71.

45. Zhang Z, Yang Z, Chen M, Li Y. Compound heterozygous protein C deficiency with pulmonary embolism caused by a novel PROC gene mutation: Case report and literature review. Medicine. 2022;101(42):e31221. DOI: https://doi.org/10.1097/MD.0000000000031221.

46. Papachristou NI, Blair HC, Kypreos KE, Papachristou D. High-density lipoprotein (HDL) metabolism and bone mass. Journal of Endocrinology. 2017;233(2):95–107. DOI: https://doi.org/10.1530/JOE‑16-0657.

47. Dmitriev IV, Dorosevich AE. Fat embolism: History and terminological features. Ural Medical Journal. 2017;(4):88–92. (In Russ.). EDN: https://elibrary.ru/YPZZCD.

48. Gabdullin MM, Pankov IO, Sirazitdinov SD, Emelin AL. Study of interleukin-6 in patients with severe lower limb trauma complicated by fat embolism syndrome. In: Pankov IO (ed.). Traumatology-Orthopedics-Reconstructive Surgery: Collection of articles and abstracts. Kazan; 2024. P. 11–17. (In Russ.). EDN: https://elibrary.ru/DZIPKR.

49. Tikhilov RM, Fomin NF, Koryshkov NA, Emelyanov VG, Privalov AM. Current aspects of treating consequences of fractures of the hindfoot bones. Traumatology and Orthopedics of Russia. 2009;(2):144–149. (In Russ.). EDN: https://elibrary.ru/KYQZOZ.

50. Olkova MV, Petrushenko VS, Ponomarev GY. Analysis of 13 TP53 and WRAP53 polymorphism frequencies in Russian populations. Bulletin of RSMU. 2021;(1):30–39. DOI: https://doi.org/10.24075/brsmu.2021.001.

51. Gladkova EN, Kozhemyakina EV, Evstigneeva LP, Tikhonova VA, Kamkina LN, Bannykh OV, et al. Osteoporosis and associated fractures in older patients with inflammatory rheumatic diseases. Osteoporosis and Bone Diseases. 2015;18(2):9–14. (In Russ.) DOI: https://doi.org/10.14341/osteo201529-14.

52. Liu YQ, Chang LW, Yang HW, Li JR, Chen YM, Hung SC, et al. Polygenic risk score as a predictor of bone fracture or osteoporosis in prostate cancer patients receiving androgen deprivation therapy. Cancer Medicine. 2025;14(22):e71395. DOI: https://doi.org/10.1002/cam4.71395.

53. Ze Y, Wu Y, Tan Z, Li R, Li R, Gao W, et al. Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: A review. Bone Research. 2025;13(1):19. DOI: https://doi.org/10.1038/s41413-025-00403-6.

54. Zhang H, Shao Y, Yao Z, Liu L, Zhang H, Yin J, et al. Mechanical overloading promotes chondrocyte senescence and osteoarthritis development through downregulating FBXW7. Annals of the Rheumatic Diseases. 2022;81(5):676–686. DOI: https://doi.org/10.1136/annrheumdis-2021-221513.

55. Choi SW, Mak TS, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nature Protocols. 2020;15(9):2759–2772. DOI: https://doi.org/10.1038/s41596-020-0353-1.

56. Liu K, Chen B, Zeng F, Wang G, Wu X, Liu Y, et al. ApoE/NOS3 knockout mice as a novel cardiovascular disease model of hypertension and atherosclerosis. Genes. 2022;13(11):1998. DOI: https://doi.org/10.3390/genes13111998.

57. Forgetta V, Keller-Baruch J, Forest M, Durand A, Bhatnagar S, Kemp JP, et al. Development of a polygenic risk score to improve screening for fracture risk: A genetic risk prediction study. PLoS Medicine. 2020;17(7): e1003152. DOI: https://doi.org/10.1371/journal.pmed.1003152.

58. Lu T, Forgetta V, Keller-Baruch J, Nethander M, Bennett D, Forest M, et al. Improved prediction of fracture risk leveraging a genome-wide polygenic risk score. Genome Medicine. 2021;13(1):16. DOI: https://doi.org/10.1186/s13073-021-00838-6.

59. Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, et al. Spatiotemporal correlation between HIF-1α and bone regeneration. The FASEB Journal. 2022;36(10):e22520. DOI: https://doi.org/10.1096/fj.202200329RR.

60. Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, et al. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis. Stem Cell Research & Therapy. 2020;11(1):38. DOI: https://doi.org/10.1186/s13287-020-1562-9.

61. Camal Ruggieri IN, Cícero AM, Issa JPM, Feldman S. Bone fracture healing: Perspectives according to molecular basis. Journal of Bone and Mineral Metabolism. 2021;39(3):311–331. DOI: https://doi.org/10.1007/s00774-020-01168-0.

62. Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Human Mutation. 2022;43(9):1125–1148. DOI: https://doi.org/10.1002/humu.24388.

63. Proietto J. Obesity and bone. F1000Research. 2020;9:F1000 Faculty Rev-1111. DOI: https://doi.org/10.12688/f1000research.20875.1.


Рецензия

Для цитирования:


Савгачев ВВ, Шубин ЛБ. Роль генного полиморфизма коморбидной патологии в формировании осложнений при травмах костей нижних конечностей. Уральский медицинский журнал. 2025;24(6):103–119. https://doi.org/10.52420/umj.24.6.103. EDN: FEROTO

For citation:


Savgachev VV, Shubin LB. The Role of Gene Polymorphism of Comorbid Pathology in the Formation of Complications in Lower Limb Bone Injury. Ural Medical Journal. 2025;24(6):103–119. (In Russ.) https://doi.org/10.52420/umj.24.6.103. EDN: FEROTO

Просмотров: 38


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2949-4389 (Online)