Antitumor effect on immune control points (PD-1/PD-L1) in malignant neoplasms
https://doi.org/10.52420/2071-5943-2021-20-4-78-84
Abstract
Introduction. Immunotherapy of malignant neoplasms is a dynamically developing field. Diagnostic possibilities in determining the biomarkers of the tumor response to immunotherapy are discussed. The search for new diagnostic «points» of response is being conducted on the basis of detailed studies of carcinogenesis and cellular biological processes in tumor and unchanged tissues.
The aim of this work is to highlight one of the promising points of influence of immunotherapy of malignant tumors of various localizations at the present stage (the PD1/PD-L1 signaling pathway), taking into account the available possibilities of application in practice in the Russian Federation. The analysis of the published activity on immunotherapy with immune checkpoint inhibitors in various malignant tumors was carried out. The search for information research sources was conducted in the open systems E-Library, National Library of Medicine (Pubmed), Cochrane Library for the last 10 years. The article analyzes the progress and prospects in the immunotherapy of malignant tumors of various localizations, including the experience of using the PD-1 inhibitor pembrolizumab in the Chelyabinsk Regional Clinical Center of Oncology and Nuclear Medicine. Information on the use of key diagnostic biomarkers for the prognosis and evaluation of the tumor response to this therapy option is highlighted. The prognostic and diagnostic significance of biomarkers already implemented in practice (PD-L1, MSI) is discussed in the scientific press. Successful immunotherapy has been described in the treatment of uterine body cancer, colon cancer, and colorectal cancer. At the same time, the results of the study of the effectiveness of immunotherapy in uveal melanoma are debatable.
Conclusion. The effect on the PD1/PD-L1 signaling pathway with the use of immune checkpoint inhibitors (pembrolizumab, atezolizumab, etc.) is one of the promising directions in the treatment of ZNO of various localizations. The determination of a number of biomarkers by immunohistochemical method, by PCR (PD-L1 receptor, MSI) allows us to identify those cases of ZNO, immunotherapy of which can give a positive effect. New approaches are being sought to influence the signaling pathways of immune control points through the development of new combined drugs. And research is also continuing to determine the predictivity of already used biomarkers of the response to immunotherapy.
About the Authors
V. V. SaevetsRussian Federation
MD
Chelyabinsk
A. Y. Shamanova
Russian Federation
MD
Chelyabinsk
D. M. Rostovcev
Russian Federation
Doctor of Science (Medicine)
Chelyabinsk
References
1. Burnet M. Cancer — a biological approach: III. Viruses associated with neoplastic conditions. IV. Practical applications // Br Med Journal.— 1957.— 1(5023).— Р. 841-847.].
2. Thomas L. Delated hypersensitivity in health and disease. In: Cellular and humoral aspects of the hypersensitive states // Hoeber-Harper— 1959.— P. 529-532.
3. PD-1 blockade induces responses by inhibiting adaptive immune resistance / P.C. Tumeh, C. L. Harview, J.H Yearley, I. P.Shintaku, E.J. M. Taylor, L.Robert, B.Chmielowski, M.Spasic, G. Henry, V. Ciobanu, A. N West, M. Carmona, C.Kivork, E. Seja, G. Cherry, A. J Gutierrez, T. R Grogan, C. Mateus, G.Tomasic, J. A Glaspy, R.O. Emerson, H.Robins, R. H Pierce, D.A. Elashoff, C.Robert, A.Ribas // Nature.— 2014.-515 (7528).— Р.568-571. doi:10.1038/nature13954.
4. Yiping Yang . Cancer immunotherapy: harnessing the immune system to battle cancer / J. Clin. Invest.— 2015.-125(9).— Р.3335-3337. https://doi.org/10.1172/JCI83871.
5. The hallmarks of successful anticancer immunotherapy /L. Galluzzi, T. A. Chan, G. Kroemer, J. D. Wolchok, A. López-Soto // Sci Transl Med. -2018.— 10(459).— eaat7807. doi: 10.1126/scitranslmed.aat7807.
6. Abbott М., Ustoyev Y. Cancer and the Immune System: The History and Background of Immunotherapy // Seminars in Oncology Nursing.-2019.— 35(5).— Р. 150923. DOI: 10.1016/j.soncn.2019.08.002
7. Лепик, К. В. Ингибиторы иммунных контрольных точек в терапии лимфом // Клиническая онкогематология. – 2018. – 11(4). – С.303-312.
8. Delivery technologies for cancer immunotherapy / R.S. Riley, C. H. June, R. Langer, M.J. Mitchell // Nat. Rev. Drug. Discov.— 2019.— 18(3).— Р. 175-196. doi: 10.1038/s41573-018-0006-z.
9. Velcheti V., Schalper K. Basic Overview of Current Immunotherapy Approaches in Cancer / Am. Soc. Clin. Onco. Educ. Book.— 2016.-35.— Р. 298-308. doi: 10.1200/EDBK_156572.
10. Zhang S., Kelaria J., Kerstetter J. The functional and prognostic implications of regulatory T-cells in colorectal carcinoma / Journal Gastrointest. Oncol. – 2015. – 6. – Р.307
11. Клинические рекомендации: Рак тела матки и саркомы матки / ред. совет: Л. А. Ашрафян и др. — Общероссийский национальный союз «Ассоциация онкологов России» 2020 URL: https://old.oncology-association.ru/files/clinical-guidelines-2020/rak_tela_matki_i_sarkomy_matki.pdf (дата обращения 13.05.2021).
12. Zhang С., Yang Q. Predictive Values of Programmed Cell Death-Ligand 1 Expression for Prognosis, Clinicopathological Factors, and Response to Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Inhibitors in Patients With Gynecological Cancers: A Meta-Analysis / Front Oncol. — 2021.-1.-10.— Р. 572203. doi: 10.3389/fonc.2020.572203.
13. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer / E. K.Enwere, E.N.Kornaga, M.Dean, T.A.Koulis, Т.Phan, М.Kalantarian, М.Köbel, Р.Ghatage, А.М. Magliocco, S. P.Lees-Miller, C. M.Doll // Modern Pathology. — 2017. — Т. 30. — № . 4. — С. 577. doi: 10.1038/modpathol.2016.221.
14. Клинические рекомендации: Рак шейки матки / ред. совет: Л.А. Ашрафян и др. — Общероссийский национальный союз «Ассоциация онкологов России» 2020 URL: https://oncology-association.ru/wp-content/uploads/2020/09/rak_shejki_matki.pdf (дата обращения 13.05.2021).
15. Tumor molecular profiling of responders and non-responders following pembrolizumab monotherapy in chemotherapy resistant advanced cervical cancer / Ngoi N. Y. L., Heong V., Lee X.W. et al. // Gynecol. Oncol. Rep. – 2018.-24. – Р. 1–5. – Doi: 10.1016/j.gore.2018.01.009.
16. Identification of a prognostic immune signature for cervical cancer to predict survival and response to immune checkpoint inhibitors / Yang S., Wu Y., Deng Y., et al. // Oncoimmunology. – 2019. – 8. – e1659094.
17. RANK-RANKL Signaling in Cancer of the Uterine Cervix: A Review / van Dam P. A., Verhoeven Y., Jacobs J. et al. // Int. J. Mol. Sci. – 2019.-20. – Р. 2183. – Doi: 10.3390/ijms20092183.
18. ENGOT-cx11/KEYNOTE-A18: A phase III, randomized, double-blind study of pembrolizumab with chemoradiotherapy in patients with high-risk locally advanced cervical cancer / Lorusso D., Colombo N., Coleman R. L. et al. // J. Clin. Oncol. – 2020.-38.-TPS6096. doi: 10.1200/JCO.2020.38.15_
19. PD-L1 and PD-L2 Expression in Cervical Cancer: Regulation and Biomarker Potential / J. Rotman, L. A. S. de Otter, E. S. Jordanova // Front. Immunol.— 2020 https://doi.org/10.3389/fimmu.2020.596825(Netherlands)
20. Targeting the PD-1 Axis with Pembrolizumab for Recurrent or Metastatic Cancer of the Uterine Cervix: A Brief Update / Y. Verhoeven, D. Quatannens, P.A. van Dam // Int. J. Mol.— 2021.— 22(4).— Р. 1807. https://doi.org/10.3390/ijms22041807.
21. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer / Brahmer J. R., Tykodi S. S., Chow L. Q. et al. // N. Engl. J. Med. – 2012. – 366. – Р. 2455–2465.
22. Chemokine gene signature identifies lymph node-like structures in melanoma: Potential for patient selection for immunotherapy? / Messina J. L., Fenstermacher D. A., Eschrich S. et al. // Sci. Rep. – 2012. – 2. – Р. 765.
23. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma / Erdag G., Schaefer J. T., Smolkin M. E. et al. // Jr. Cancer Res. – 2012. –72. – Р.1070–1080.
24. Tsai K. K., Loo K., Khurana N. Сlinical characteristics predictive of response to pembrolizumab in advanced melanoma. / ASCO Meet Abstr. – 2015.-33. – Р. 9031.
25. Hamid O, Robert C, Daud A. Safety and tumor responses with lambrolizumab (antiPD-1) in melanoma / N Engl J Med. – 2013. – 369(2). – Р. 134-144. doi:10.1056/NEJMoa1305133.
26. Differential Activity of Nivolumab, Pembrolizumab and MPDL3280A according to the Tumor Expression of Programmed Death-Ligand-1 (PD-L1): Sensitivity Analysis of Trials in Melanoma, Lung and Genitourinary Cancers / L.Carbognin, S.Pilotto, M.Milella, V.Vaccaro, M.Brunelli, A.Caliò, F. Cuppone, I. Sperduti, D.Giannarelli, M. Chilosi, V.Bronte, A.Scarpa, E.Bria, G.Tortora // PloS One.— 2015.-10 (6): e0130142. doi:10.1371/journal.pone.0130142.
27. Клинические рекомендации: Увеальная меланома: Общероссийский национальный союз «Ассоциация онкологов России» 2020 – URL: https://cr.minzdrav.gov.ru/schema/100_1 (дата обращения 16.05.2021)
28. Kim D. W., Anderson J., Patel S.P. Immunotherapy for Uveal Melanoma / Melanoma Manag.— 2016.-3(2).— Р. 125-135. doi: 10.2217/mmt-2015-0006.
29. Jindal V. Role of immune checkpoint inhibitors and novel immunotherapies in uveal melanoma // Chin Clin Oncol 2018. – 7(1). – Р. 8. – doi: 10.21037/cco.2018.01.05.
30. A phase 2 study of tremelimumab in patients with advanced uveal melanoma / A. M Joshua, J.G. Monzon, C. Mihalcioiu, D.Hogg, M.Smylie, T. Cheng // Melanoma Res. – 2015. – 25. – Р.342-7 DOI: 10.1097/CMR.0000000000000175
31. Heppt M. V., Heinzerling L., Kähler K. C. Prognostic factors and outcomes in metastatic uveal melanoma treated with programmed cell death-1 or combined PD-1/cytotoxic T-lymphocyte antigen-4 inhibitio // Eur J Cancer. – 2017. – 82. – Р. 56-65.
32. Anti-PD-1 antibodies in metastatic uveal melanoma: a treatment option? / C. Bender, A. Enk, R.Gutzmer, J. C Hassel // Cancer Med 2017. – 6. – Р.1581-6. – DOI: 10.1002/cam4.887
33. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies / A. P. Algazi , K. K. Tsai, A. N. Shoushtari, R.R. Munhoz, Z. Eroglu, J.M. Piulats, P. A Ott, D. B. Johnson, J. Hwang, A.I. Daud, J.A. Sosman, R.D. Carvajal, B.Chmielowski, M.A. Postow, J.S. Weber, R. J. Sullivan // Cancer 2016. – 122. – Р.3344-53. – doi: 10.1002/cncr.30258.
34. The use of pembrolizumab for the treatment of metastatic uveal melanoma / L.A. Kottschade, R.R. McWilliams, S.N. Markovic, M. S. Block, J. V. Bisneto, A. Q. Pham, B. L. Esplin, R. S. Dronca // Melanoma Res 2016. – 26. – Р. 300-3. – Doi: 10.1097/CMR.0000000000000242
35. Activity of anti-PD1 drugs in uveal melanoma patients / S. Piperno-Neumann, V.Servois, P.Mariani, N.Cassoux, R. Barnhill, M. J. Rodrigues // Journal of Clinical Oncology .— 2016.— 34.-15.— Р. 9588.
36. Clinical activity and safety of pembrolizumab in ipilimumab pre-treated patients with uveal melanoma / I. Karydis, P.Y.Chan, M.Wheater, E. Arriola, P.W. Szlosarek, C. H. Ottensmeie // Oncoimmunology. – 2016. – 5. – Р.e1143997. – Doi: 10.1080/2162402X.2016.1143997
37. Motzer R. J. Nivolumab versus everolimus in advanced renal-cell carcinoma // N. Engl. Journal. Medcine. – 2015. – 373. – P.-1803-1813.
38. Donin N.M. Immunotherapy in the treatment of urothelial carcinoma / Journal Urol. – 2017. – 197. – Р.14-22.
39. Overman, M. J. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicenter, phase 2 study // Lancet Oncol. – 2017. – 18. – P.1182-1191.
40. Boland, C. R. Microsatellite instability in colorectal cancer / Gastroenterology. – 2010. – 138. – P. 2073-2087.
41. Reck, M. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer / N. Engl. J. Med. – 2016. – 375. – P.1823-1833.
42. Identification of an immunogenic subset of metastatic uveal melanoma / L.D. Rothermel , A.C. Sabesan, D.J. Stephens, S.S. Chandran, B.C. Paria, A. K. Srivastava, R.Somerville, J. R. Wunderlich, C. R. Lee, L. Xi, T. H. Pham, M.Raffeld, P. Jailwala, M. Kasoji, U.S. Kammula // Clin Cancer Res. – 2016.-22. – Р.2237-49. – doi: 10.1158/1078-0432.CCR-15-2294.
43. A. Javed, M. Milhem. Role of Natural Killer Cells in Uveal Melanoma / Cancers (Basel). – 2020. – 9. – 12 (12). – Р. 3694. – doi: 10.3390/cancers12123694.
44. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach / C.Luchini, F. Bibeau, M. J. L. Ligtenberg, N. Singh, A. Nottegar, T. Bosse, R. Miller, N. Riaz, J-Y Douillard, F. Andre, A.Scarpa // Ann Oncol. – 2019. – 1. – 30 (8). – Р. 1232-1243. – doi: 10.1093/annonc/mdz116.
45. Landscape of Microsatellite Instability Across 39 Cancer Types / Bonneville R., Krook M. A., Kautto E. A. et al. // JCO Precis. Oncol. – 2017. – 1. –15. – PO.17.00073. – doi: 10.1200/PO.17.00073..doi: 10.1200/PO.17.00073.
46. Gynecological Cancers Caused by Deficient Mismatch Repair and Microsatellite Instability / M. Deshpande, P. A Romanski, Z. Rosenwaks, J. Gerhardt // Cancers (Basel). – 2020. – 10. – 12(11). – Р.3319. doi: 10.3390/cancers12113319.
47. Le D. T., Uram J. N., Wang H. PD-1 blockade in tumors with mismatch-repair deficiency // N Engl J Med. – 2015. – 372(26). – Р.2509-20. – doi: 10.1056/NEJMoa1500596.
Review
For citations:
Saevets VV, Shamanova AY, Rostovcev DM. Antitumor effect on immune control points (PD-1/PD-L1) in malignant neoplasms. Ural Medical Journal. 2021;20(4):78-84. (In Russ.) https://doi.org/10.52420/2071-5943-2021-20-4-78-84