Relationship between corneal biomechanical indexes and optic disc morphometric indexes in patients with primary open angle glaucoma
https://doi.org/10.52420/2071-5943-2023-22-1-63-71
Abstract
Introduction. Glaucoma is a socially significant disease. With the advent of new technologies it has become possible to diagnose this disease at an earlier stage.
The aim of the investigation was to reveal the relationships between biomechanical parameters of the optic nerve disc (OND) in patients with primary open-angle glaucoma (POAG) against the background of achieving the "target" intraocular pressure (IOP).
Material and methods. A retrospective cohort study was conducted in which 51 patients with POAG were included. All patients underwent a standard ophthalmologic examination. Central corneal thickness and biomechanical parameters of the cornea were also evaluated. Optical coherence tomography (OCT) was performed to assess the state of the OND.
Results and discussion. Goldman IOP levels had no differences depending on glaucoma stage, but corneal compensated IOP levels differed: the lowest IOP was detected in patients with advanced glaucoma, and the highest – in patients with far advanced glaucoma. Corneal hysteresis factor (CH) and corneal resistance factor (CRF) values also depended on the glaucoma stage: the highest – in initial, the lowest – in far advanced glaucoma. The coefficient of biomechanical tension of the fibrous membrane of the eye was the highest in the group of patients with advanced glaucoma. When assessing the correlation between corneal biomechanical properties and OND parameters, there was a positive correlation of CTR with the mean thickness of RNFL, RNFL thickness in the upper segment and neuroretinal band area (NRB), and a negative – with horizontal, vertical size and excavation area.
Conclusion. This investigation demonstrated the correlation between corneal parameters (CCT, CH, CRF) and their derivatives: CH/CRF ratio, corneal biomechanical tension coefficient and corneal biomechanical coefficient characterizing IOP compensation degree and morphological parameters of the optic disk in POAG against the background of "target" IOP. Protective properties of a thicker cornea, higher indices of corneal hysteresis and corneal resistance factor to glaucoma progression were shown. Keywords: glaucoma, corneal hysteresis, opti
About the Authors
E. V. BerdnikovaRussian Federation
E.V. Berdnikova – Ph.D. in medicine
Chelyabinsk
E. V. Tur
Russian Federation
E.V. Tur – Ph.D. in medicine
Chelyabinsk
T. Ju. Kozhevnikova
Russian Federation
T.Ju. Kozhevnikova
Chelyabinsk
References
1. National Guide to Glaucoma. For practicing physicians. Moscow : GEOTARMedia, 2019. 384 p. (In Russ).
2. European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol 2021;105(Suppl.1):1–169. http://doi.org/10.1136/bjophthalmol-2021-egsguidelines.
3. Hirooka K, Fujiwara A, Shiragami C et al. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol 2012;40(6):576–582. http://doi.org/10.1111/j.1442-9071.2012.02762.x.
4. Avetisov SJe, Antonov AA, Reshhikova VS. Interrelation of DZN structure and excavation shape with biomechanical parameters of the ocular fibrous membrane in glaucoma. XVI All-Russian School of Ophthalmology: collection of articles. 2017:20–24 (In Russ).
5. Clinical guidelines "Primary open-angle glaucoma" (approved by the Russian Ministry of Health). (In Russ). URL: https://legalacts.ru/doc/klinicheskie-rekomendatsii-glaukoma-pervichnaja-otkrytougolnaja-utv-minzdravom-rossii/
6. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005;31(1):156–162. http://doi.org/10.1016/j.jcrs.2004.10.044.
7. Bochmann F, Ang GS, Azuara-Blanco A. Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON). Graefes Arch Clin Exp Ophthalmol 2008;246(5):735–738. http://doi.org/10.1007/s00417-007-0756-5.
8. Pepose JS, Feigenbaum SK, Qazi MA et al. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am J Ophthalmol 2007;143(1):39–47. http://doi.org/10.1016/j.ajo.2006.09.036.
9. Murphy ML, Pokrovskaya O, Galligan M, O’Brien C. Corneal hysteresis in patients with glaucoma-like optic discs, ocular hypertension and glaucoma. BMC Ophthalmol 2017;17(1):1. http://doi.org/10.1186/s12886-016-0396-9.
10. Antonov AA, Kozlova IV. Biomechanical tension coefficient in assessing the degree of intraocular pressure compensation. Bulletin of Ophthalmology = Vestnik oftal'mologii 2021;137(5–2):255–261. (In Russ).
11. Avetisov SJe, Bubnova IA, Petrov SJu et al. Peculiarities of biomechanical properties of the fibrous membrane in patients with primary open angle glaucoma. Glaucoma = Glaukoma. Zhurnal NII GB RAMN 2012;4:7–11. (In Russ).
12. Gordon MO, Beiser JA, Brandt JD et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120(6):714–720, discussion 829–830. http://doi.org/10.1001/archopht.120.6.714.
13. Mangouritsas G, Morphis G, Mourtzoukos S, Feretis E. Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol 2009;87(8):901–905. http://doi.org/10.1111/j.1755-3768.2008.01370.x.
14. Anand A, De Moraes CGV, Teng CC et al. Corneal hysteresis and visual field asymmetry in open angle glaucoma. Invest Ophthalmol Vis Sci 2010;51(12):6514–6518. http://doi.org/10.1167/iovs.10-5580.
15. Dana D, Mihaela C, Raluca I et al. Corneal hysteresis and primary open angle glaucoma. Rom J Ophthalmol 2015;59(4):252–254.
16. Sullivan-Mee M, Billingsley SC, Patel AD et al. Ocular Response Analyzer in subjects with and without glaucoma. Optom Vis Sci 2008;85(6):463–470. http://doi.org/10.1097/OPX.0b013e3181784673.
17. Avetisov SJe, Bubnova IA, Antonov AA, Reshhikova VS. Elastic properties of the fibrous membrane in patients with normotensive and primary open-angle glaucoma. Ophthalmology. Eastern Europe = Oftal'mologija. Vostochnaja Evropa 2012;4(15):24–31. (In Russ.).
18. Erichev VP, Onishhenko AL, Kuroedov AV et al. Ophthalmologic risk factors for primary open angle glaucoma. RMJ. Clinical Ophthalmology = RMZh. Klinicheskaja oftal'mologija 2019;19(2):81–86. (In Russ.).
19. Korneeva AV, Kuroedov AV, Lovpache DN et al. The use of central corneal thickness values to correct tonometry results. RMJ. Clinical Ophthalmology = RMZh. Klinicheskaja oftal'mologija 2020;20(1):15–20. (In Russ.).
20. Prata TS, Lima VC, Guedes LM et al. Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients. Clin Exp Ophthalmol 2012;40(7):682–688. http://doi.org/10.1111/j.1442-9071.2012.02790.x.
21. Zueva MV, Arapiev MU, Capenko IV et al. Morphofunctional features of retinal ganglion cell changes in physiological aging and in the early stage of glaucoma. Bulletin of Ophthalmology = Vestnik oftal'mologii 2016;132(1):36–42. (In Russ.).
22. Mokbel TH, Ghanem AF. Correlation of central corneal thickness and optic nerve head topography in patients with primary open-angle glaucoma. Oman J Ophthalmol 2010;3(2):75–80. http://doi.org/10.4103/0974-620X.64231.
23. Gunvant P, Porsia L, Watkins RJ et al. Relationships between central corneal thickness and optic disc topography in eyes with glaucoma, suspicion of glaucoma, or ocular hypertension. Clin Ophthalmol 2008;2(3):591–599. http://doi.org/10.2147/opth.s2814.
24. Kaushik S, Pandav SS, Banger A et al. Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. Am J Ophthalmol 2012;153(5):840–849. http://doi.org/10.1016/j.ajo.2011.10.032.
25. Shah S, Laiquzzaman M, Bhojwani R et al. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 2007;48(7):3026-3031. http://doi.org/10.1167/iovs.04-0694.
26. Carbonaro F, Andrew T, Mackey DA et al. The heritability of corneal hysteresis and ocular pulse amplitude. A Twin Study. Ophthalmology 2008;115(9):1545–1549. http://doi.org/10.1016/j.ophtha.2008.02.011.
27. Laiquzzaman M, Bhojwani R, Cunliffe I, Shah S. Diurnal variation of ocular hysteresis in normal subjects: relevance in clinical context. Clin Exp Ophthalmol 2006;34(2):114–118. http://doi.org/10.1111/j.1442-9071.2006.01185.x.
28. Susanna BN, Ogata NG, Jammal AA et al. Corneal biomechanics and visual field progression in eyes with seemingly wellcontrolled intraocular pressure. Ophthalmology 2019;126(12):1640–1646. http://doi.org/10.1016/j.ophtha.2019.07.023.
29. Hocaoğlu M, Kara C, Şen EM, Öztürk F. Relationships between corneal biomechanics and the structural and functional parameters of glaucoma damage. Arq Bras Oftalmol 2020;83(2):132–140. http://doi.org/10.5935/0004-2749.20200019.
30. Bochmann F, Ang GS, Azuara-Blanco A. Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON). Graefes Arch Clin Exp Ophthalmol 2008;246(5): 735–738. http://doi.org/10.1007/s00417-007-0756-5.
31. Ljubimov GA, Moiseeva IN, Shtejn AA et al. On the possibility to use parameters that characterize the elastic properties of the corneoscleral coat of the eye for the diagnostics of its abnormal mechanical state at primary open-angle glaucoma. Russ J Biomech 2018;22(1):5–14. http://doi.org/10.15593/RJBiomech/2018.1.01
32. Abe R, Gracitelli CPB, Medeiros FA. The use of spectral-domain optical coherence tomography to detect glaucoma progression. Open Ophthalmol J 2015;9:78–88. http://doi.org/10.2174/1874364101509010078.
Review
For citations:
Berdnikova EV, Tur EV, Kozhevnikova TJ. Relationship between corneal biomechanical indexes and optic disc morphometric indexes in patients with primary open angle glaucoma. Ural Medical Journal. 2023;22(1):63-71. (In Russ.) https://doi.org/10.52420/2071-5943-2023-22-1-63-71