Preview

Уральский медицинский журнал

Расширенный поиск

Нарушение сна как предиктор ускоренного старения человека

https://doi.org/10.52420/umj.23.3.146

EDN: KZPZWY

Аннотация

Введение. Известно, что старение приводит к дисфункции всех функциональных систем организма человека. Одним из его основных предикторов является нарушение сна, изучение влияния которого на развитие ускоренного процесса старения признается актуальной проблемой для медицинского сообщества.

Цель работы — анализ современных данных о возрастных аспектах нарушений сна и описание известных маркеров преждевременного старения, ассоциированных с сомнологическими расстройствами.

Материалы и методы. Поиск и подбор литературных источников осуществлялся в базах данных PubMed, eLibrary, «КиберЛенинка», Google Scholar. Для поиска подбирались следующие ключевые слова: biological age, chronological age, biomarkers, brain aging, sleep disorders, polysomnography, «старение, сон, биологический возраст, хронологический возраст, когнитивное старение». Глубина поиска — 17 лет, с 2007 по 2024 г. Общее количество публикаций, включенных в обзор, — 80.

Результаты и обсуждение. Старение — общий патологический процесс, затрагивающий все физиологические системы человека. Дана характеристика отличиям между терминами биологического и хронологического возрастов. Определена роль сомнологических нарушений в ускоренном процессе старения. По мере увеличения возраста наблюдаются изменения электрофизиологической картины сна с удлинением периода засыпания, увеличением числа ночных пробуждений, нарушением структуры медленноволнового сна и повышением дневной сонливости. Биологические маркеры старения, такие как сиртуины, длина теломер, показатели метилирования ДНК, положительно коррелируют с нарушением сна. Показано значение нейровизуализационных методов в определении ускоренного темпа старения у лиц с сомнологическими расстройствами.

Заключение. Нарушение сна определяется как значимый показатель ускоренного старения организма. Дальнейшее исследование изменений структуры и качества сна может изменить представления о патогенетических механизмах старения и способствовать разработке новых диагностических и терапевтических стратегий в сфере антивозрастной медицины.

Об авторах

А. В. Городничева
Уральский государственный медицинский университет
Россия

Анна Вадимовна Городничева — аспирант кафедры неврологии и нейрохирургии

Екатеринбург



О. П. Ковтун
Уральский государственный медицинский университет
Россия

Ольга Петровна Ковтун — доктор медицинских наук, профессор, академик Российской академии наук, ректор

Екатеринбург



Т. О. Бродовская
Уральский государственный медицинский университет
Россия

Татьяна Олеговна Бродовская — доктор медицинских наук, доцент, и. о. заведующего кафедрой пропедевтики внутренних болезней

Екатеринбург



Список литературы

1. Grinin LE, Grinin AL, Korotaev AV. Global aging as an integral problem of the future. Sociological Journal. 2023;29(2):110–131. (In Russ.). DOI: https://doi.org/10.19181/socjour.2023.29.2.6.

2. Yashchuk AI. Population aging: Problem and solutions. Bulletin of Vitebsk State Technological University. 2022;(2):218–229. (In Russ.). DOI: https://doi.org/10.24412/2079-7958-2022-2-218-229.

3. Tian YE, Cropley V, Maier AB, Lautenschlager NT, Breakspear M, Zalesky A. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nature Medicine. 2023;29(5):1221–1231. DOI: https://doi.org/10.1038/s41591-023-02296-6.

4. Shaaban CE, Rosano C, Zhu X, Rutherford BR, Witonsky KR, Rosso AL, et al. Discordant biological and chronological age: Implications for cognitive decline and frailty. The Journals of Gerontology: Series A. 2023;78(11):2152–2161. DOI: https://doi.org/10.1093/gerona/glad174.

5. Libertini G, Shubernetskaya O, Corbi G, Ferrara N. Is there evidence to support the subtelomere-telomere theory of aging? Biochemistry. 2021;86(12):1766–1781. (In Russ.). DOI: https://doi.org/10.31857/S0320972521120022.

6. Kuznik BI, Chalisova NI, Tsybikov NN, Linkova NS, Davydov SO. Stress, aging and the body’s unified humoral defense system. Epigenetic mechanisms of regulation. Advances in Physiological Sciences. 2020;51(3): 51–68. (In Russ.). DOI: https://doi.org/10.31857/S030117982002006X.

7. Vasilevich NI. Knowing the enemy by sight: Molecular markers of aging. Laboratory and Production. 2020;(3–4):118–128. (In Russ.). DOI: https://doi.org/10.32757/2619-0923.2020.3-4.13.118.128.

8. Chan M, Yuan H, Soifer I, Maile TM, Wang RY, Ireland A, et al. Novel insights from a multiomics dissection of the Hayflick limit. eLife. 2022;11:e70283. DOI: https://doi.org/10.7554/eLife.70283.

9. Morgunova GV, Khokhlov AN. Signs of similarities and differences in cellular models of aging. A scoping review. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(3):151–159. (In Russ.). EDN: https://elibrary.ru/eodraa.

10. Spivak IM, Mikhelson VM, Spivak DL. Telomere length, telomerase activity, stress and aging. Advances in Gerontology. 2015;28(3):441–448. (In Russ.). EDN: https://elibrary.ru/uylysh.

11. Egorov EE. Healthy aging: Antioxidants, uncouplers and/or telomerase? Molecular Biology. 2020;54(3): 355–361. (In Russ.). DOI: https://doi.org/10.31857/S0026898420030052.

12. Zenkov NK, Kozhin PM, Chechushkov AV, Kandalintseva NV, Martinovich GG, Menshchikova EB. Oxidative stress during aging. Advances in Gerontology. 2020;33(1):10–22. (In Russ.). DOI: https://doi.org/10.34922/AE.2020.33.1.001.

13. Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, et al. The landscape of aging. Science China Life Sciences. 2022;65(12):2354–2454. DOI: https://doi.org/10.1007/s11427-022-2161-3.

14. Zotkin EG, Dydykina IS, Lila AM. Inflammatory theory of aging, age-associated diseases and osteoarthritis. Russian Medical Journal. 2020;28(7):33–38. (In Russ.). EDN: https://elibrary.ru/wucbvj.

15. Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andrés V. Biological versus chronological aging: JACC focus seminar. Journal of The American College of Cardiology. 2020;75(8):919–930. DOI: https://doi.org/10.1016/j.jacc.2019.11.062.

16. Kamasheva GR, Sineglazova AV, Arkhipov EV. Morphofunctional aspects of aging that determine the course of respiratory diseases in the elderly and senile age. The Bulletin of Contemporary Clinical Medicine. 2022;15(2):95–102. (In Russ.). DOI: https://doi.org/10.20969/VSKM.2022.15(2).95-102.

17. Cherkasov AD, Petrova EN. Pathophysiological factors of premature human aging. In: New technologies in medicine, biology, pharmacology and ecology. Moscow: Institute of New Information Technologies; 2022. P. 127–137. (In Russ.). DOI: https://doi.org/10.47501/978-5-6044060-2-1.127-137.

18. Larina VN, Larin VG, Vrublevsky AN, Samorodskaya IV. The aging process of the body from the perspective of multifactorial changes. General Medicine. 2023;4:8–16. (In Russ.). DOI: https://doi.org/10.24412/2071-5315-2023-13022.

19. Laurent S, Boutouyrie P, Cunha PG, Lacolley P, Nilsson PM. Concept of extremes in vascular aging. Hypertension. 2019;74(2):218–228. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.119.12655.

20. Bulgakova SV, Treneva EV, Zakharova NO, Nikolaeva AV. Biological and chronological aging. Clinical Gerontology. 2020;26(9–10):9–16. (In Russ.). DOI: https://doi.org/10.26347/1607-2499202009-10009-016.

21. Rozenova MI, Kalaeva AA. Relationships as a factor in human aging and longevity. Psychology and Psychotechnics. 2020;(4):29–52. (In Russ.). DOI: https://doi.org/10.7256/2454-0722.2020.4.34432.

22. Johnson AA, English BW, Shokhirev MN, Sinclair DA, Cuellar TL. Human age reversal: Fact or fiction? Aging Cell. 2022;21(8):e13664. DOI: https://doi.org/10.1111/acel.13664.

23. Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochemia Medica. 2019;29(3):030501. DOI: https://doi.org/10.11613/BM.2019.030501.

24. Polikanova IS, Balan PV, Martynova OV. Cognitive and biological age of a person: Current issues and new perspectives in the study of aging. Theoretical and Experimental Psychology. 2022;15(4):106–120. (In Russ.). DOI: https://doi.org/10.24412/2073-0861-2022-4-106-120.

25. Ahadi S, Zhou W, Schüssler-Fiorenza Rose SM, Sailani MR, Contrepois K, Avina M, et al. Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nature Medicine. 2020;26(1):83–90. DOI: https://doi.org/10.1038/s41591-019-0719-5.

26. Borsky P, Holmannova D, Andrys C, Kremlacek J, Fiala Z, Parova H, et al. Evaluation of potential aging biomarkers in healthy individuals: Telomerase, AGEs, GDF11/15, sirtuin 1, NAD+, NLRP3, DNA/RNA damage, and klotho. Biogerontology. 2023;24(6):937–955. DOI: https://doi.org/10.1007/s10522-023-10054-x.

27. Muehlroth BE, Werkle-Bergner M. Understanding the interplay of sleep and aging: Methodological challenges. Psychophysiology. 2020;57(3):e13523. DOI: https://doi.org/10.1111/psyp.13523.

28. Brodovskaya TO, Grishchenko OO, Bazhenova OV, Grishina IF. What is important for an internist to know about sleep? Ural Medical Journal. 2023;22(1):120–126. (In Russ.). DOI: https://doi.org/10.52420/2071-5943-2023-22-1-120-126.

29. Madaeva IM, Semenova NV, Kolesnikova LI, Kolesnikov SI. Aging and cognitive impairment from the point of view of somnology. Advances in Gerontology. 2021;34(2):195–201. (In Russ.). DOI: https://doi.org/10.34922/AE.2021.34.2.002.

30. Li J, Vitiello MV, Gooneratne NS. Sleep in normal aging. Sleep Medicine Clinics. 2022;17(2):161–171. DOI: https://doi.org/10.1016/j.jsmc.2022.02.007.

31. Rundo JV, Downey R. Polysomnography. Handbook of Clinical Neurology. 2019;160:381–392. DOI: https://doi.org/10.1016/B978-0-444-64032-1.00025-4.

32. Muehlroth BE, Werkle-Bergner M. Understanding the interplay of sleep and aging: Methodological challenges. Psychophysiology. 2020;57(3):e13523. DOI: https://doi.org/10.1111/psyp.13523.

33. Bogomolov DV, Gornostaev DV, Kuznetsova TR, Ievlev FV, Dzhansueva AS, Dorokhina GV. Influence of age-involutive, stressor factors, neurodegenerative diseases and exogenous intoxication on morphological features of the pinal physus. Medical Newsletter of Vyatka. 2023;77(1):83–90. (In Russ.). DOI: https://doi.org/10.24412/2220-7880-2023-1-83-90.

34. Romanchuk NP. Cognitive brain: Neurobiology, neurophysiology and neuroendocrinology of emotions. Bulletin of Science and Practice. 2023;9(3):158–193. (In Russ.). DOI: https://doi.org/10.33619/2414-2948/88/21.

35. Obrezan AA, Ponomarenko GN, Kantemirova RK, Obrezan AG, Filippov AE, Tuktarov AM, et al. Poor nutrition and chronic stress are the key causes of cardiovascular diseases and premature aging in humans? Cardiology: News, Opinions, Training. 2023;11(1):8–18. (In Russ.). DOI: https://doi.org/10.33029/2309-1908-2023-11-1-8-18.

36. Kovtun OP, Kirpishchikov AG. Clinical and instrumental criteria for diagnosing and assessing the effectiveness of treatment of sleep disorders in children. Journal of Ural Medical Academic Science. 2007;(2):114–117. (In Russ.). EDN: https://elibrary.ru/yolksq.

37. Licis A. Sleep-wake disorders in childhood. Continuum. 2020;26(4):1034–1069. DOI: https://doi.org/10.1212/CON.0000000000000897.

38. Qin H, Fu L, Jian T, Jin W, Liang M, Li J, et al. REM sleep-active hypothalamic neurons may contribute to hippocampal social-memory consolidation. Neuron. 2022;110(23):4000–4014.e6. DOI: https://doi.org/10.1016/j.neuron.2022.09.004.

39. Pyatin VF, Maslova OA, Romanchuk NP. Alzheimer’s disease and melatonin/testosterone/estrogens: Neurophisiological and neuroendocrinological routing of longevity. Bulletin of Science and Practice. 2022;8(8):97– 128. (In Russ.). DOI: https://doi.org/10.33619/2414-2948/81/15.

40. Benca RM, Teodorescu M. Sleep physiology and disorders in aging and dementia. Handbook of Clinical Neurology. 2019;167:477–493. DOI: https://doi.org/10.1016/B978-0-12-804766-8.00026-1.

41. Bouchard M, Lina JM, Gaudreault PO, Dubé J, Gosselin N, Carrier J. EEG connectivity across sleep cycles and age. Sleep. 2020;43(3):zsz236. DOI: https://doi.org/10.1093/sleep/zsz236.

42. Sun H, Paixao L, Oliva JT, Goparaju B, Carvalho DZ, van Leeuwen KG, et al. Brain age from the electroencephalogram of sleep. Neurobiology of Aging. 2019;74:112–120. DOI: https://doi.org/10.1016/j.neurobiolaging.2018.10.016.

43. Proshkina EN, Solovyov IA, Shaposhnikov MV, Moskalev AA. Key molecular mechanisms of aging, biomarkers and potential interventions. Molecular Biology. 2020;54(6):883–921. (In Russ.). DOI: https://doi.org/10.31857/S0026898420060099.

44. Batsevich VA, Stepanova AV, Kalyuzhny EA. Comparison of the results of using chronological and skeletal (biological) ages as grouping factors in interpopulation morphological studies of children and adolescents. Moscow University Anthropology Bulletin. 2022;(3):5–16. (In Russ.). DOI: https://doi.org/10.32521/2074-8132.2022.3.005-016.

45. Kusters CJ, Klopack ET, Crimmins EM, Seeman TE, Cole S, Carroll JE. Short sleep and insomnia are associated with accelerated epigenetic age. Innovation in Aging. 2022;6(S1):363. DOI: https://doi.org/10.1093/geroni/igac059.1436.

46. Fedorova MA. Sirtuins-proteins of longevity. In: Models of innovative solutions to increase the competitiveness of domestic science. Sterlitamak: Agentstvo mezhdunarodnyh issledovanij; 2022. P. 75–79. (In Russ.). EDN: https://elibrary.ru/ekrdgx.

47. Savitsky DV, Linkova NS, Kozhevnikova EO, Kozlov KL, Paltseva EM, Kvetnaya TV. Sirtuins and chemokines-markers of replicative and induced aging of human endothelial cells. Acta Biomedica Scientifica. 2022;7(5–2):12–20. (In Russ.). DOI: https://doi.org/10.29413/ABS.2022-7.5-2.2.

48. Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Reports. 2019;52(1):24–34. DOI: https://doi.org/10.5483/BMBRep.2019.52.1.290.

49. Kravchenko KP, Medvedev DS, Morozkina SN, Trotsyuk DV, Gurko GI, Rozhdestvenskaya OA. Diagnostic markers of premature aging (on a clinical model of dilated cardiomyopathy). Current Problems of Health Care and Medical Statistics. 2023;(1):189–204. (In Russ.). DOI: https://doi.org/10.24412/2312-2935-2023-1-189-204.

50. Osum M, Serakinci N. Impact of circadian disruption on health; SIRT1 and Telomeres. DNA Repair. 2020;96:102993. DOI: https://doi.org/10.1016/j.dnarep.2020.102993.

51. Malicki M, Karuga FF, Szmyd B, Sochal M, Gabryelska A. Obstructive sleep apnea, circadian clock disruption, and metabolic consequences. Metabolites. 2022;13(1):60. DOI: https://doi.org/10.3390/metabo13010060.

52. Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Experimental & Molecular Medicine. 2019;51:1–13. DOI: https://doi.org/10.1038/s12276-019-0235-1.

53. Gabryelska A, Sochal M, Turkiewicz S, Białasiewicz P. Relationship between HIF-1 and circadian clock proteins in obstructive sleep apnea patients — preliminary study. Journal of Clinical Medicine. 2020;9(5):1599. DOI: https://doi.org/10.3390/jcm9051599.

54. Wang RH, Zhao T, Cui K, Hu G, Chen Q, Chen W, et al. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging. Scientific Reports. 2016;6:28633. DOI: https://doi.org/10.1038/srep28633.

55. Chen WJ, Liaw SF, Lin CC, Chiu CH, Lin MW, Chang FT. Effect of nasal CPAP on SIRT1 and endothelial function in obstructive sleep apnea syndrome. Lung. 2015;193:1037–1045. DOI: https://doi.org/10.1007/s00408-015-9790-y.

56. Lin CC, Wang HY, Liaw SF, Chiu CH, Lin MW. Effect of oral appliance on circulating leukocyte telomere length and SIRT1 in obstructive sleep apnea. Clinical Oral Investigations. 2019;23(3):1397–1405. DOI: https://doi.org/10.1007/s00784-018-2560-5.

57. Zhu J, Chen C, Li Z, Liu X, He J, Zhao Z, et al. Overexpression of Sirt6 ameliorates sleep deprivation induced-cognitive impairment by modulating glutamatergic neuron function. Neural Regeneration Research. 2023;18(11):2449–2458. DOI: https://doi.org/10.4103/1673-5374.371370.

58. Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology. 2022;23:1–19. DOI: https://doi.org/10.1007/s10522-021-09945-8.

59. Donlon TA, Morris BJ, Chen R, Masaki KH, Allsopp RC, Willcox DC, et al. Analysis of polymorphisms in 59 potential candidate genes for association with human longevity. The Journals of Gerontology: Series A. 2018;73(1):1459–1464. DOI: https://doi.org/10.1093/gerona/glx247.

60. Lagunas-Rangel FA. SIRT7 in the aging process. Cellular and Molecular Life Sciences. 2022;79(6):297. DOI: https://doi.org/10.1007/s00018-022-04342-x.

61. Castro-Grattoni AL, Suarez-Giron M, Benitez I, Tecchia L, Torres M, Almendros I, et al. The effect of chronic intermittent hypoxia in cardiovascular gene expression is modulated by age in a mice model of sleep apnea. Sleep. 2021;44(6):zsaa293. DOI: https://doi.org/10.1093/sleep/zsaa293.

62. Kvetnoy IM, Paltsev MA. Melatonin: Extrapineal localization, role in the mechanisms of aging. In: Firsov ML (ed.). Collection of abstracts of the XXIV Congress of the Pavlov Physiological Society. Saint Petersburg: VVM Publishing House; 2023. P. 497. (In Russ.). EDN: https://elibrary.ru/bngawy.

63. Shilova AV, Ananyeva NI, Safonova NY, Lukina LV. Melatonin in the regulation of human life and its role in the development of pathology. V.M. Bekhterev Review of Psychiatry and Medical Psychology. 2023;57(2): 20–29. (In Russ.). EDN: https://elibrary.ru/krbnak.

64. Diss LB, Robinson SD, Wu Y, Fidalgo S, Yeoman MS, Patel BA. Age-related changes in melatonin release in the murine distal colon. ACS Chemical Neuroscience. 2013;4(5):879–887. DOI: https://doi.org/10.1021/cn4000617.

65. Hinojosa-Godinez A, Jave-Suarez LF, Flores-Soto M, Gálvez-Contreras AY, Luquín S, Oregon-Romero E, et al. Melatonin modifies SOX2+ cell proliferation in dentate gyrus and modulates SIRT1 and MECP2 in long-term sleep deprivation. Neural Regeneration Research. 2019;14(10):1787–1795. DOI: https://doi.org/10.4103/1673-5374.257537.

66. Carroll JE, Prather AA. Sleep and biological aging: A short review. Current Opinion in Endocrine and Metabolic Research. 2021;18:159–164. DOI: https://doi.org/10.1016/j.coemr.2021.03.021.

67. Iloabuchi C, Innes KE, Sambamoorthi U. Association of sleep quality with telomere length, a marker of cellular aging: A retrospective cohort study of older adults in the United States. Sleep Health. 2020;6(4): 513–521. DOI: https://doi.org/10.1016/j.sleh.2019.12.003.

68. Madaeva IM, Kurashova NA, Ukhinov EB, Berdina ON, Semenova NV, Madaev VV, et al. Changes in the telomeres length in patients with obstructive sleep apnea after continuous positive airway pressure therapy: A pilot study. S. S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5–2):52–57. (In Russ.). DOI: https://doi.org/10.17116/jnevro202212205252.

69. Barragán R, Ortega-Azorín C, Sorlí JV, Asensio EM, Coltell O, St-Onge M-P, et al. Effect of physical activity, smoking, and sleep on telomere length: A systematic review of observational and intervention studies. Journal of Clinical Medicine. 2021;11(1):76. DOI: https://doi.org/10.3390/jcm11010076.

70. James S, McLanahan S, Brooks-Gunn J, Mitchell C, Schneper L, Wagner B, et al. Sleep duration and telomere length in children. The Journal of Pediatrics. 2017;187:247–252.E1. DOI: https://doi.org/10.1016/j.jpeds.2017.05.014.

71. Carskadon MA, Chappell KR, Barker DH, Hart AC, Dwyer K, Gredvig-Ardito C, et al. A pilot prospective study of sleep patterns and DNA methylation-characterized epigenetic aging in young adults. BMC Research Notes. 2019;12(1):583. DOI: https://doi.org/10.1186/s13104-019-4633-1.

72. Larsen M, He F, Kawasawa YI, Berg A, Vgontzas AN, Liao D, et al. Objective and subjective measures of sleep initiation are differentially associated with DNA methylation in adolescents. Clinical Epigenetics. 2023;15(1):136. DOI: https://doi.org/10.1186/s13148-023-01553-2.

73. Belsky DW, Caspi A, Corcoran DL, Sugden K, Poulton R, Arseneault L, et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. eLife. 2022;11:e73420. DOI: https://doi.org/10.7554/eLife.73420.

74. Baril AA, Beiser AS, Mysliwiec V, Sanchez E, DeCarli CS, Redline S, et al. Slow-wave sleep and MRI markers of brain aging in a community-based sample. Neurology. 2021;96(10):e1462–e1469. DOI: https://doi.org/10.1212/WNL.0000000000011377.

75. Ramduny J, Bastiani M, Huedepohl R, Sotiropoulos SN, Chechlacz M. The association between inadequate sleep and accelerated brain ageing. Neurobiology of Aging. 2022;114:1–14. DOI: https://doi.org/10.1016/j.neurobiolaging.2022.02.005.

76. González KA, Tarraf W, Stickel AM, Kaur S, Agudelo C, Redline S, et al. Sleep duration and brain MRI measures: Results from the SOL–INCA MRI study. Alzheimer’s & Dementia. 2024;20(1):641–651. DOI: https://doi.org/10.1002/alz.13451.


Дополнительные файлы

Рецензия

Для цитирования:


Городничева АВ, Ковтун ОП, Бродовская ТО. Нарушение сна как предиктор ускоренного старения человека. Уральский медицинский журнал. 2024;23(3):146-162. https://doi.org/10.52420/umj.23.3.146. EDN: KZPZWY

For citation:


Gorodnicheva AV, Kovtun OP, Brodovskaya TO. Sleep Disturbance as a Predictor of Accelerated Human Aging. Ural Medical Journal. 2024;23(3):146-162. (In Russ.) https://doi.org/10.52420/umj.23.3.146. EDN: KZPZWY

Просмотров: 418


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)