Радиомика в лучевой диагностике биологических подтипов рака молочной железы (обзор литературы)
https://doi.org/10.52420/umj.23.4.41
EDN: DUJFIG
Аннотация
Введение. Рак молочной железы (РМЖ) занимает лидирующие позиции среди онкологических заболеваний, выявляемых у женщин. Ранняя диагностика и поиск предикторов злокачественных новообразований с использованием лучевых методов визуализации позволяет своевременно поставить диагноз и назначить лечение, что улучшает прогноз при РМЖ. Большая часть данных, полученных с помощью радиологического изображения, в значительной степени неспецифична на молекулярном уровне. Решением этих вопросов занимается радиомика, осуществляющая комплексную количественную оценку опухолевых фенотипов путем извлечения большого числа количественных признаков из медицинских изображений.
Цель — систематизация современных научных направлений радиомики в лучевой диагностике РМЖ.
Методы. Комплексный анализ электронных баз данных PubMed и eLibrary.ru за последние 5 лет.
Результаты. На основании изученных литературных данных определены основные перспективные научные направления развития радиомики в лучевой диагностике РМЖ: изучение распространенности заболевания, его факторов риска, новые скрининговые подходы в ранней диагностике; поиск специфических маркеров и доступных визуализации признаков определенного молекулярного потдтипа РМЖ; поиск прогностических предикторов и изучение точности прогноза на основании выявленных характеристик; определение возможностей персонализированной терапии, оценка наиболее эффективного лечения и современное ведение онкологических больных; расширение возможностей радиомики в сочетании с другими научными направлениями.
Ключевые слова
Об авторах
А. Ю. ПоповаРоссия
Алиса Юрьевна Попова✉ — заведующий отделением лучевой диагностики
Екатеринбург
В. Е. Гажонова
Россия
Вероника Евгеньевна Гажонова — доктор медицинских наук, профессор кафедры рентгенологии и ультразвуковой диагностики
Москва
М. В. Карташов
Россия
Максим Викторович Карташов — кандидат медицинских наук, руководитель диагностичского центра
Екатеринбург
С. А. Шевченко
Россия
Светлана Анатольевна Шевченко — кандидат медицинских наук, рентгенолог
Екатеринбург
О. С. Белова
Россия
Ольга Сергеевна Белова — кандидат медицинских наук, доцент кафедры психиатрии и клинической психологии
Архангельск
Список литературы
1. Gavrilenko SP, Obukhova DD, Dzhepparova SR. Breast cancer or the most common tumor. Diagnostics. Modern approach to treatment. Colloquium-journal. 2021;(15):35–39. (In Russ.). DOI: https://doi.org/10.24412/2520-6990-2021-15102-35-39.
2. Kaprin AD, Starinsky VV, Shakhzadova AO (eds.). Malignant neoplasms in Russia in 2020 (morbidity and mortality). Moscow: P. A. Herzen Moscow Scientific Research Oncological Institute; 2021. 252 p. (In Russ.).
3. Tabár L, Dean PB, Chen TH, Yen AM, Chen SL, Fann JC, et al. The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening. Cancer. 2019;125(4):515–523. DOI: https://doi.org/10.1002/cncr.31840.
4. Ognerubov NA, Shatov IA, Shatov AV. Radiogenomics and radiomics in the diagnostics of malignant tumours: A literary review. Tambov University Reports. Series Natural and Technical Sciences. 2017;22(6):1453-1460. (In Russ.). DOI: https://doi.org/10.20310/1810-0198-2017-22-6-1453-1460.
5. Fan L, Goss PE, Strasser-Weippl K. Current status and future projections of breast cancer in Asia. Breast Care. 2015;10(6):372–378. DOI: https://doi.org/10.1159/000441818.
6. Pesapane F, Suter MB, Rotili A, Penco S, Nigro O, Cremonesi M, et al. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Medical Oncology. 2020; 37(4):29. DOI: https://doi.org/10.1007/s12032-020-01353-1.
7. Johnson KS, Conant EF, Soo MS. Molecular subtypes of breast cancer: A review for breast radiologists. Journal of Breast Imaging. 2021;3(1):12–24. DOI: https://doi.org/10.1093/jbi/wbaa110.
8. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology. 2020;84:106535. DOI: https://doi.org/10.1016/j.intimp.2020.106535.
9. Barba D, León-Sosa A, Lugo P, Suquillo D, Torres F, Surre F, et al. Breast cancer, screening and diagnostic tools: All you need to know. Critical Reviews in Oncology/Hematology. 2021;157:103174. DOI: https://doi.org/10.1016/j.critrevonc.2020.103174.
10. Rafferty EA, Park JM, Philpotts LE, Poplack SP, Sumkin JH, Halpern EF, et al. Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammographyalone: Results of a multicenter, multireader trial. Radiology. 2013;266(1):104–113. DOI: https://doi.org/10.1148/radiol.12120674.
11. Shaikh S, Rasheed A. Predicting molecular subtypes of breast cancer with mammography and ultrasound findings: Introduction of sono-mammometry score. Radiology Research and Practice. 2021;9:6691958. DOI: https://doi.org/10.1155/2021/6691958.
12. Vasef MA, Auerbach A, Bocklage TJ, Chabot-Richards D, Aguilera N, Hunt Karner K, et al.; Vasef MA, Auerbach A (eds.). Diagnostic pathology: Molecular oncology. 2th ed. Philadelphia: Elsevier, 2020.
13. Ma W, Zhao Y, Ji Y, Guo X, Jian X, Liu P, et al. Breast cancer molecular subtype prediction by mammographic radiomic features. Academic Radiology. 2019;26(2):196–201. DOI: https://doi.org/10.1016/j.acra.2018.01.023.
14. Govorukhina VG, Semenov SS, Gelezhe PB, Didenko VV, Morozov SP, Andreychenko AE. The role of mammography in radiomics of breast cancer. Digital Diagnostics. 2021;2(2):185–199. (In Russ., Eng., Chin.). DOI: https://doi.org/10.17816/DD70479.
15. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology. 2020;84:106535. DOI: https://doi.org/10.1016/j.intimp.2020.106535.
16. Galati F, Moffa G, Pediconi F. Breast imaging: Beyond the detection. European Journal of Radiology. 2022;146:110051 DOI: https://doi.org/10.1016/j.ejrad.2021.110051.
17. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 2022; 72(1):7–33. DOI: https://doi.org/10.3322/caac.21708.
18. Kaprin AD, Chissov VI, Aleksandrova LM, Starinsky VV. Association of behavioral risk factors with the development of malignant neoplasms. Russian Journal of Preventive Medicine. 2021;24(2):109–117. (In Russ.). DOI: https://doi.org/10.17116/profmed202124021109.
19. Fakhri N, Chad MA, Lahkim M, Houari A, Dehbi H, Belmouden A, et al. Risk factors for breast cancer in women: An update review. Medical Oncology. 2022;39(12):197. DOI: https://doi.org/10.1007/s12032-022-01804‑x.
20. Coughlin SS. Social determinants of breast cancer risk, stage, and survival. Breast Cancer Research and Treatment. 2019;177(3):537–548. DOI: https://doi.org/10.1007/s10549-019-05340-7.
21. Howard FM, Olopade OI. Epidemiology of triple-negative breast cancer: A review. The Cancer Journal. 2021;27(1):8–16. DOI: https://doi.org/10.1097/PPO.0000000000000500.
22. Chen F, Wen W, Long J, Shu X, Yang Y, Shu XO, et al. Mendelian randomization analyses of 23 known and suspected risk factors and biomarkers for breast cancer overall and by molecular subtypes. International Journal of Cancer. 2022;151(3):372–380. DOI: https://doi.org/10.1002/ijc.34026.
23. Frantsuzova IS. Analysis of risk factors of breast cancer development. International Scientific Research Journal. 2019;3(81):68–74. (In Russ.). DOI: https://doi.org/10.23670/IRJ.2019.81.3.011.
24. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism. 2019;92:121–135. DOI: https://doi.org/10.1016/j.metabol.2018.11.001.
25. Arthur RS, Xue X, Kamensky V, Chlebowski RT, Simon M, Luo J, et al. The association between DXA-derived body fat measures and breast cancer risk among postmenopausal women in the Women’s Health Initiative. Cancer Medicine. 2020;9(4):1581–1599. DOI: https://doi.org/10.1002/cam4.2690.
26. Berishvili AI, Kedrova AG, Greyan TA, Zaitseva OV. Obesity and breast cancer. Tumors of female reproductive system. 2022;18(3):40–51. (In Russ.). DOI: https://doi.org/10.17650/1994-4098-2022-18-3-40-51.
27. van den Brandt PA, Ziegler RG, Wang M, Hou T, Li R, Adami HO, et al. Body size and weight change over adulthood and risk of breast cancer by menopausal and hormone receptor status: A pooled analysis of 20 prospective cohort studies. European Journal of Epidemiology. 2021;36(1):37–55. DOI: https://doi.org/10.1007/s10654-020-00688-3.
28. Iyengar NM, Arthur R, Manson JE, Chlebowski RT, Kroenke CH, Peterson L, et al. Association of body fat and risk of breast cancer in postmenopausal women with normal body mass index: A secondary analysis of a randomized clinical trial and observational study. JAMA Oncology. 2019;5(2):155–163. DOI: https://doi.org/10.1001/jamaoncol.2018.5327.
29. Román M, Louro J, Posso M, Alcántara R, Peñalva L, Sala M, et al. Breast density, benign breast disease, and risk of breast cancer over time. European Radiology. 2021;31(7):4839–4847. DOI: https://doi.org/10.1007/s00330-020-07490-5.
30. Ginsburg O, Yip CH, Brooks A, Cabanes A, Caleffi M, Dunstan Yataco JA, et al. Breast cancer early detection: A phased approach to implementation. Cancer. 2020;126(10):2379–2393. DOI: https://doi.org/10.1002/cncr.32887.
31. Ding L, Greuter MJW, Truyen I, Goossens M, Van der Vegt B, De Schutter H, et al. Effectiveness of organized mammography screening for different breast cancer molecular subtypes. Cancers. 2022;14(19):4831. DOI: https://doi.org/10.3390/cancers14194831.
32. Mann RM, Hooley R, Barr RG, Moy L. Novel approaches to screening for breast cancer. Radiology. 2020;297(2):266–285. DOI: https://doi.org/10.1148/radiol.2020200172.
33. Sturesdotter L, Sandsveden M, Johnson K, Larsson AM, Zackrisson S, Sartor H. Mammographic tumour appearance is related to clinicopathological factors and surrogate molecular breast cancer subtype. Scientific Reports. 2020;10(1):20814. DOI: https://doi.org/10.1038/s41598-020-77053-7.
34. Ryu MJ, Kim YS, Lee SE. Association between imaging features using the BI-RADS and tumor subtype in patients with invasive breast cancer. Current Medical Imaging. 2022;18(6):648–657. DOI: https://doi.org/10.2174/1573405617666210520155157.
35. Cen D, Xu L, Li N, Chen Z, Wang L, Zhou S, et al. BI-RADS 3–5 microcalcifications can preoperatively predict breast cancer HER2 and Luminal a molecular subtype. Oncotarget. 2017;8(8):13855–13862. DOI: https://doi.org/10.18632/oncotarget.14655.
36. Li JW, Zhang K, Shi ZT, Zhang X, Xie J, Liu JY, et al. Triple-negative invasive breast carcinoma: The association between the sonographic appearances with clinicopathological feature. Scientific Reports. 2018; 8(1):9040. DOI: https://doi.org/10.1038/s41598-018-27222-6.
37. Shaikh S, Rasheed A. Predicting molecular subtypes of breast cancer with mammography and ultrasound findings: Introduction of sono-mammometry score. Radiology Research and Practice. 2021;9:6691958. DOI: https://doi.org/10.1155/2021/6691958.
38. Ma W, Zhao Y, Ji Y, Guo X, Jian X, Liu P, et al. Breast cancer molecular subtype prediction by mammographic radiomic features. Academic Radiology. 2019;26(2):196–201. DOI: https://doi.org/10.1016/j.acra.2018.01.023.
39. Li JW, Li N, Jiang YZ, Liu YR, Shi ZT, Chang C, et al. Ultrasonographic appearance of triple-negative invasive breast carcinoma is associated with novel molecular subtypes based on transcriptomic analysis. Annals of Translational Medicine. 2020;8(7):435. DOI: https://doi.org/10.21037/atm.2020.03.204.
40. Wu T, Li J, Wang D, Leng X, Zhang L, Li Z, et al. Identification of a correlation between the sonographic appearance and molecular subtype of invasive breast cancer: A review of 311 cases. Clinical Imaging. 2019;53:179–185. DOI: https://doi.org/10.1016/j.clinimag.2018.10.020.
41. Ginsburg O, Yip CH, Brooks A, Cabanes A, Caleffi M, Dunstan Yataco JA, et al. Breast cancer early detection: A phased approach to implementation. Cancer. 2020;126(10):2379–2393. DOI: https://doi.org/10.1002/cncr.32887.
42. Wu M, Ma J. Association between imaging characteristics and different molecular subtypes of breast cancer. Academic Radiology. 2017;24(4):426–434. DOI: https://doi.org/10.1016/j.acra.2016.11.012.
43. Cai S, Yao M, Cai D, Yan J, Huang M, Yan L, et al. Association between digital breast tomosynthesis and molecular subtypes of breast cancer. Oncology Letters. 2019;17(3):2669–2676. DOI: https://doi.org/10.3892/ol.2019.9918.
44. Zeng F, Chen L, Lin L, Hu H, Li J, He P, et al. Iodine map histogram metrics in early-stage breast cancer: Prediction of axillary lymph node metastasis status. Quantitative Imaging in Medicine and Surgery. 2022; 12(12):5358–5370. DOI: https://doi.org/10.21037/qims‑22-253.
45. Fei J, Wang GQ, Meng YY, Zhong X, Ma JZ, Sun NN, et al. Breast cancer subtypes affect the ultrasound performance for axillary lymph node status evaluation after neoadjuvant chemotherapy: A retrospective analysis. Japanese Journal of Clinical Oncology. 2021;51(10):1509–1514. DOI: https://doi.org/10.1093/jjco/hyab117.
46. Kleinstern G, Scott CG, Tamimi RM, Jensen MR, Pankratz VS, Bertrand KA, et al. Association of mammographic density measures and breast cancer “intrinsic” molecular subtypes. Breast Cancer Research and Treatment. 2021;187(1):215–224. DOI: https://doi.org/10.1007/s10549-020-06049-8.
47. Bodewes FTH, van Asselt AA, Dorrius MD, Greuter MJW, de Bock GH. Mammographic breast density and the risk of breast cancer: A systematic review and meta-analysis. The Breast. 2022;66:62–68. DOI: https://doi.org/10.1016/j.breast.2022.09.007.
48. Tan PS, Ali MA, Eriksson M, Hall P, Humphreys K, Czene K. Mammography features for early markers of aggressive breast cancer subtypes and tumor characteristics: A population-based cohort study. International Journal of Cancer. 2021;148(6):1351–1359. DOI: https://doi.org/10.1002/ijc.33309.
49. Sartor H, Zackrisson S, Hegardt C, Larsson C. Association of mammographic features with molecular breast tumor profiles. Cancer Treatment and Research Communications. 2021;28:100387. DOI: https://doi.org/10.1016/j.ctarc.2021.100387.
50. Pizzato M, Carioli G, Rosso S, Zanetti R, La Vecchia C. Mammographic breast density and characteristics of invasive breast cancer. Cancer Epidemiology. 2021;70:101879. DOI: https://doi.org/10.1016/j.canep.2020.101879.
51. Velásquez García HA, Gotay CC, Wilson CM, Lohrisch CA, Lai AS, Aronson KJ, et al. Mammographic density parameters and breast cancer tumor characteristics among postmenopausal women. Breast Cancer: Targets and Therapy. 2019;11:261–271. DOI: https://doi.org/10.2147/BCTT.S192766.
52. Pulappadi VP, Dhamija E, Baby A, Mathur S, Pandey S, Gogia A, et al. Imaging features of breast cancer subtypes on mammography and ultrasonography: An analysis of 479 patients. Indian Journal of Surgical Oncology. 2022;13(4):931–938. DOI: https://doi.org/10.1007/s13193-022-01606-7.
53. Darvish L, Taghi M, Toossi B, Roozbeh N, Azimian H. The role of radiogenomics in the diagnosis of breast cancer: A systematic review. Egyptian Journal of Medical Human Genetics. 2022;23(1):99. DOI: https://doi.org/10.1186/s43042-022-00310-z.
54. Davey MG, Davey MS, Boland MR, Ryan ÉJ, Lowery AJ, Kerin MJ. Radiomic differentiation of breast cancer molecular subtypes using pre-operative breast imaging — A systematic review and meta-analysis. European Journal of Radiology. 2021;144:109996. DOI: https://doi.org/10.1016/j.ejrad.2021.109996.
55. Li JW, Cao YC, Zhao ZJ, Shi ZT, Duan XQ, Chang C, et al. Prediction for pathological and immunohistochemical characteristics of triple-negative invasive breast carcinomas: The performance comparison between quantitative and qualitative sonographic feature analysis. European Radiology. 2022;32(3):1590–1600. DOI: https://doi.org/10.1007/s00330-021-08224-x.
56. Zhang T, Tan T, Han L, Appelman L, Veltman J, Wessels R, et al. Predicting breast cancer types on and beyond molecular level in a multi-modal fashion. NPJ Breast Cancer. 2023;9(1):16. DOI: https://doi.org/10.1038/s41523-023-00517-2.
57. Sezgın G, Apaydın M, Etıt D, Atahan MK. Tumor size estimation of the breast cancer molecular subtypes using imaging techniques. Med Pharm Rep. 2020;93(3):253–259. DOI: https://doi.org/10.15386/mpr-1476.
58. Popova AY, Gazhonova VE, Demidov SM, Kazanceva NV. Radiomic characteristics of different T1 breast cancer biotypes. Journal of Oncology: Diagnostic Radiology and Radiotherapy. 2023;6(4):34–41. (In Russ.). DOI: https://doi.org/10.37174/2587-7593-2023-6-4-34-41.
59. Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, Wahlström C, et al. Breast cancer risk genes — Association analysis in more than 113,000 women. The New England Journal of Medicine. 2021; 384(5):428–439. DOI: https://doi.org/10.1056/NEJMoa1913948.
60. Gervas P, Molokov AYu, Panpherova EV, Pisareva LPh, Cherdyntseva NV. Ethnic aspects of hereditary breast cancer. Siberian Journal of Oncology. 2019;18(2):102–108. DOI: https://doi.org/10.21294/1814-4861-2019-18-2-102-108.
61. Nie Z, Wang J, Ji XC. Retracted: Microcalcification-associated breast cancer: HER2-enriched molecular subtype is associated with mammographic features. Br J Radiol. 2021;29:20170942. DOI: https://doi.org/10.1259/bjr.20170942.
62. Puchkova OS, Sinicyn VE, Bogomazova SYu, Mershina EA, Shirokij VP, Bazhenova DA, et al. Correlation of the size, histology subtype of breast cancer at the time of detection, and the tumor grade. Bulletin of Pirogov National Medical & Surgical Center. 2019;14(1):45–48. DOI: https://doi.org/10.25881/BPNMSC.2019.24.68.009.
63. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol. 2020;84:106535. DOI: https://doi.org/10.1016/j.intimp.2020.106535.
64. Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med. 2017;4:227. DOI: https://doi.org/10.3389/fmed.2017.00227.
65. Kudelova E, Smolar M, Holubekova V, Hornakova A, Dvorska D, Lucansky V, et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Mol Sci. 2022; 23(23):14937. (In Russ). DOI: https://doi.org/10.3390/ijms232314937.
66. Johnson KS, Conant EF, Soo MS. Molecular subtypes of breast cancer: A review for breast radiologists. J Breast Imaging. 2021;3(1):12–24. DOI: https://doi.org/10.1093/jbi/wbaa110.
67. Pesapane F, Suter MB, Rotili A, et al. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol. 2020;37:29. DOI: https://doi.org/10.1007/s12032-020-01353-1.
68. Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, et al. Global increase in breast cancer incidence: Risk factors and preventive measures. Biomed Res Int. 2022;18:9605439. DOI: https://doi.org/10.1155/2022/9605439.
69. Rozhkova NI, Bozhenko VK, Burdina II, Zapirova SB, Kudinova EA, Labazanova PG, et al. Radiogenomics of breast cancer as new vector of interdisciplinary integration of radiation and molecular biological technologies (literature review). Medical Alphabet. 2020; (20):21–29. (In Russ.). DOI: https://doi.org/10.33667/2078-5631-2020-20-21-29.
70. Govorukhina VG, Semenov SS, Gelezhe PB, Didenko VV, Morozov SP, Andreychenko AE. The role of mammography in breast cancer radiomics. Digital Diagnostics. 2021;2(2):185–199. (In Russ., Eng., Chin.). DOI: https://doi.org/10.17816/DD70479.
Рецензия
Для цитирования:
Попова АЮ, Гажонова ВЕ, Карташов МВ, Шевченко СА, Белова ОС. Радиомика в лучевой диагностике биологических подтипов рака молочной железы (обзор литературы). Уральский медицинский журнал. 2024;23(4):41–56. https://doi.org/10.52420/umj.23.4.41. EDN: DUJFIG
For citation:
Popova AY, Gazhonova VE, Kartashov MV, Shevchenko SA, Belova OS. Radiomics in the Radiation Diagnosis of Biological Subtypes of Breast Cancer (Literature Review). Ural Medical Journal. 2024;23(4):41–56. (In Russ.) https://doi.org/10.52420/umj.23.4.41. EDN: DUJFIG