Dynamics of Free Radical Oxidative Processes During the Latent Period of Experimental Metastasizing to the Liver
https://doi.org/10.52420/umj.23.5.89
EDN: QEHVCY
Abstract
Purpose — to investigate the dynamics of the content of antioxidant enzymes superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPO1), glutathione reductase (GR) and lipid peroxidation products diene conjugates (DC), malondialdehyde (MDA) in the spleen and liver during the latent period of growth and metastasis of experimental tumor.
Materials and methods. Using 28 white male rats, a model of hematogenous liver metastasis was created by transplanting sarcoma 45 cells (S45) into the spleen, previously lead out under the skin 3 weeks before. Previously, was determined that a tumor visualized in the spleen at 5 weeks, and liver metastases at 7 weeks after transplantation S45. Levels of SOD1, GPO1, GR and MDA were determined using ELISA and DC by biochemical method in spleen and liver homogenates during the latent period of tumor growth and metastasis (1–2 weeks post-transplantation).
Results. Significant changes (1.5–5.2 times, р < 0.050–0.001) in studied factors levels were observed compared to intact rats and rats with the spleen lead out. Activation of lipid peroxidation and antioxidant system was noted in the spleen (tumor-carrying organ) during tumor growth and metastasis. At the same time, in the liver (the target organ of metastasis) observed also increased lipid peroxidation but simultaneously a pronounced decreased GR levels (5 times, p < 0.001) without affecting SOD1 levels.
Conclusion. Liver tissue exhibited the inferiority of antioxidant protection and the formation of pro-oxidant condition during the latent period of tumor growth, which may prepare the soil for metastasis.
About the Authors
E. M. FrantsiyantsRussian Federation
Elena М. Frantsiyants - Doctor of Sciences (Biology), Professor, Deputy General Director for Science
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
E. I. Surikova
Russian Federation
Ekaterina I. Surikova - Candidate of Sciences (Biology), Senior Researcher of the Laboratory of Malignant Tumor Pathogenesis Study
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
I. V. Kaplieva
Russian Federation
Irina V. Kaplieva - Doctor of Sciences (Medicine), Head of the Laboratory of Malignant Tumor Pathogenesis Study
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
I. V. Neskubina
Russian Federation
Irina V. Neskubina - Doctor of Sciences (Biology), Senior Researcher of the Laboratory of Malignant Tumor Pathogenesis Study
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
E. G. Shakaryan
Russian Federation
Elionora G. Shakaryan - Postgraduate Student of the Department of Oncology
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
A. V. Snezhko
Russian Federation
Alexander V. Snezhko - Doctor of Sciences (Medicine), Surgeon of the Department of Abdominal Oncology No. 1; Assistant of the Department of Oncology
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
V. A. Bandovkina
Russian Federation
Valeria A. Bandovkina - Doctor of Sciences (Biology), Leading Researcher of the Laboratory of Malignant Tumor Pathogenesis Study
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
L. K. Trepitaki
Russian Federation
Lidia K. Trepitaki - Candidate of Sciences (Biology), Researcher of the Laboratory of Malignant Tumor Pathogenesis Study
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
Yu. A. Pogorelova
Russian Federation
Yulia А. Pogorelova - Candidate of Sciences (Biology), Senior Researcher of the Laboratory of Malignant Tumor Pathogenesis Study
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
L. A. Nemashkalova
Russian Federation
Lyidmila A. Nemashkalova - Researcher of the Laboratory of Malignant Tumor Pathogenesis Study
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
N. S. Lesovaya
Russian Federation
Natalia S. Lesovaya - Junior Researcher of the Laboratory of Malignant Tumor Pathogenesis Study
Rostov-on-Don
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest.
References
1. Kaplieva IV, Frantsiyants EM, Kit OI. Pathogenetic aspects of metastatic liver damage (experimental study). Moskow: Kredo; 2022. 356 p. (In Russ.). EDN: https://elibrary.ru/CCLUYR.
2. Horn SR, Stoltzfus KC, Lehrer EJ, Dawson LA, Tchelebi L, Gusani NJ, et al. Epidemiology of liver metastases. Cancer Epidemiology. 2020;67:101760. DOI: https://doi.org/10.1016/j.canep.2020.101760.
3. Belova YV, Altufiev YV. Mechanisms of development of pathological processes in the liver. Natural Sciences. 2009;(3):114–120. (In Russ.). EDN: https://elibrary.ru/LHMRGV.
4. Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Frontiers in Immunology. 2022;13:941721. DOI: https://doi.org/10.3389/fimmu.2022.941721.
5. Zheng M, Tian Z. Liver-mediated adaptive immune tolerance. Frontiers in Immunology. 2019;10:2525. DOI: https://doi.org/10.3389/fimmu.2019.02525.
6. Ahmed O, Robinson MW, O’Farrelly C. Inflammatory processes in the liver: Divergent roles in homeostasis and pathology. Cellular & Molecular Immunology. 2021;18:1375–1386. DOI: https://doi.org/10.1038/s41423-021-00639-2.
7. Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, et al. Interorgaо DOI: https://doi.org/10.3389/fimmu.2023.1314123.
8. Kelly AM, Golden-Mason L, Traynor O, Geoghegan J, McEntee G, Hegarty JE, et al. Changes in hepatic immunoregulatory cytokines in patients with metastatic colorectal carcinoma: Implications for hepatic anti-tumour immunity. Cytokine. 2006;35(3–4):171–179. DOI: https://doi.org/10.1016/j.cyto.2006.07.019.
9. Gao B, Jeong WI, Tian Z. Liver: An organ with predominant innate immunity. Hepatology. 2008;47(2): 729–736. DOI: https://doi.org/10.1002/hep.22034.
10. Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in glutathione content in liver diseases: An update. Antioxidants. 2021;10(3):364. DOI: https://doi.org/10.3390/antiox10030364.
11. Santacroce G, Gentile A, Soriano S, Novelli A, Lenti MV, Di Sabatino A. Glutathione: Pharmacological aspects and implications for clinical use in non-alcoholic fatty liver disease. Frontiers in Medicine. 2023;10:1124275. DOI: https://doi.org/10.3389/fmed.2023.1124275.
12. Perelmuter VM, Manskikh VN. Preniche as missing link of the metastatic niche concept explaining organ- preferential metastasis of malignant tumors and the type of metastatic disease. Biochemistry. 2012; 77(1):111–118. DOI: https://doi.org/10.1134/S0006297912010142.
13. Akhtar M, Haider A, Rashid S, Al-Nabet ADMH. Paget’s “seed and soil” theory of cancer metastasis: An idea whose time has come. Advances In Anatomic Pathology. 2019;26(1):69–74. DOI: https://doi.org/10.1097/PAP.0000000000000219.
14. Izraely S, Witz IP. Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. International Journal of Cancer. 2021;148(6):1308–1322. DOI: https://doi.org/10.1002/ijc.33247.
15. Frantsiyants EM, Bandovkina VA, Kaplieva IV, Surikova EI, Neskubina IV, Pogorelova YuA, et al. Changes in pathophysiology of tumor growth and functional activity of the hypothalamic-pituitary-thyroid axis in rats of both sexes with the development of Guerin’s carcinoma on the background of hypothyroidism. South Russian Journal of Cancer. 2022;3(4):26–39. (In Russ.). DOI: https://doi.org/10.37748/2686-9039-2022-3-4-3.
16. Frantsiyants EM, Kaplieva IV, Bandovkina VA, Surikova EI, Neskubina IV, Trepitaki LK, et al. Modeling of multiple primary malignant tumors in experiment. South Russian Journal of Cancer. 2022;3(2):14–21. (In Russ.). DOI: https://doi.org/10.37748/2686-9039-2022-3-2-2.
17. Kit OI, Frantsiyants EM, Kaplieva IV, Trepitaki LK, Evstratova OF. A method for reproduction of metastases in the liver. Bulletin of Experimental Biology and Medicine. 2014;157(6):773–775. DOI: https://doi.org/10.1007/s10517-014-2664-0.
18. Kopylova TN. A new method for the determination of conjugated dienes in blood serum. In: Majore AJa (ed.). Cellular and subcellular experimental pathology of the liver. Riga: Zinatne; 1982. P. 135. (In Russ.).
19. Reczek CR, Chandel NS. The two faces of reactive oxygen species in cancer. Annual Review of Cancer Biology. 2017;1(1):79–98. DOI: https://doi.org/10.1146/annurev-cancerbio‑041916-065808.
20. Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology. 2018;217(6):1915–1928. DOI: https://doi.org/10.1083/jcb.201708007.
21. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology. 2023;97(10): 2499–2574. DOI: https://doi.org/10.1007/s00204-023-03562-9.
22. Miao L, St Clair DK. Regulation of superoxide dismutase genes: Implications in disease. Free Radical Biology and Medicine. 2009;47(4):344–356. DOI: https://doi.org/10.1016/j.freeradbiomed.2009.05.018.
23. Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. о:1323–1367. DOI: https://doi.org/10.1007/s00204-024-03696-4.
24. Pinegin BV, Vorobjeva NV, Pashenkov MV, Chernyak BV. The role of mitochondrial reactive oxygen species in activation of innate immunity. Immunology. 2018;39(4):221–229. (In Russ.). EDN: https://elibrary.ru/tkjzta.
25. Chelombitko MA. The role of reactive oxygen species in inflammation. Mini-review. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(4):242–246. (In Russ.). EDN: https://elibrary.ru/ypxdhv.
26. Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Chemistry of hydrogen peroxide formation and elimination in mammalian cells, and its role in various pathologies. Stresses. 2022;2(3):256–274. DOI: https://doi.org/10.3390/stresses2030019.
27. Kulinsky VI, Kolesnichenko LS. The glutathione system. II. Other enzymes, thiol-disulfide metabolism, inflammation, and immunity, functions. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2009;3:211–220 (In Russ.). DOI: https://doi.org/10.1134/S1990750809030019.
28. Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology and Medicine. 2016;95:27–42. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.02.028.
29. Vašková J, Kočan L, Vaško L, Perjési P. Glutathione-related enzymes and proteins: A review. Molecules. 2023;28(3):1447. DOI: https://doi.org/10.3390/molecules28031447.
30. Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, et al. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Communication and Signaling. 2024;22(1):7. DOI: https://doi.org/10.1186/s12964-023-01398-5.
31. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015;27(2):211–222. DOI: https://doi.org/10.1016/j.ccell.2014.11.019.
32. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4‑hydroxy‑2‑nonenal. Oxidative Medicine and Cellular Longevity. 2014;2014:360438. DOI: https://doi.org/10.1155/2014/360438.
33. Qu X, Tang Y, Hua S. Immunological approaches towards cancer and inflammation: A cross talk. Frontiers in Immunology. 2018;9:563. DOI: https://doi.org/10.3389/fimmu.2018.00563.
34. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, et al. Clinical relevance of biomarkers of oxidative stress. Antioxidants & Redox Signaling. 2015;23:1144–1170. DOI: https://doi.org/10.1089/ars.2015.6317.
35. Tudek B, Zdżalik-Bielecka D, Tudek A, Kosicki K, Fabisiewicz A, Speina E. Lipid peroxidation in face of DNA damage, DNA repair and other cellular processes. Free Radical Biology and Medicine. 2017;107:77–89. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.11.043.
36. Busch CJ, Binder CJ. Malondialdehyde epitopes as mediators of sterile inflammation. Biochimica et Biophysica Acta (BBA) — Molecular and Cell Biology of Lipids. 2017;1862(4):398–406. DOI: https://doi.org/10.1016/j.bbalip.2016.06.016.
37. Xiao L, Xian M, Zhang C, Guo Q, Yi Q. Lipid peroxidation of immune cells in cancer. Frontiers in Immunology. 2024;14:1322746. DOI: https://doi.org/10.3389/fimmu.2023.1322746.
38. Sacco R, Eggenhoffner R, Giacomelli L. Glutathione in the treatment of liver diseases: Insights from clinical practice. Minerva Gastroenterologica e Dietologica. 2016;62(4):316–324. PMID: https://pubmed.gov/27603810.
39. Rose S, Melnyk S, Trusty TA, Pavliv O, Seidel L, Li J, et al. Intracellular and extracellular redox status and free radical generation in primary immune cells from children with autism. Autism Research and Treatment. 2012;2012:986519. DOI: https://doi.org/10.1155/2012/986519.
40. Wróblewska J, Wróblewski M, Hołyńska-Iwan I, Modrzejewska M, Nuszkiewicz J, Wróblewska W, et al. The role of glutathione in selected viral diseases. Antioxidants. 2023;12(7):1325. DOI: https://doi.org/10.3390/antiox12071325.
41. Hossain M, Kubes P. Innate immune cells orchestrate the repair of sterile injury in the liver and beyond. European Journal of Immunology. 2019;49(6):831–841. DOI: https://doi.org/10.1002/eji.201847485.
Supplementary files
Review
For citations:
Frantsiyants EM, Surikova EI, Kaplieva IV, Neskubina IV, Shakaryan EG, Snezhko AV, Bandovkina VA, Trepitaki LK, Pogorelova YA, Nemashkalova LA, Lesovaya NS. Dynamics of Free Radical Oxidative Processes During the Latent Period of Experimental Metastasizing to the Liver. Ural Medical Journal. 2024;23(5):89–103. (In Russ.) https://doi.org/10.52420/umj.23.5.89. EDN: QEHVCY