Preview

Уральский медицинский журнал

Расширенный поиск

Влияние позвоночно-тазовой подвижности на технологию и исходы тотального эндопротезирования тазобедренного сустава

https://doi.org/10.52420/umj.23.5.114

EDN: WAHVXR

Аннотация

Введение. Тотальное эндопротезирование тазобедренного сустава (ТЭТБС) является одним из наиболее часто проводимых оперативных вмешательств среди пациентов с заболеваниями тазобедренного сустава. Несмотря на высокую частоту и эффективность ТЭТБС, нестабильность является основной причиной выполнения повторных оперативных вмешательств, которые оказывают значительное влияние на качество жизни пациентов.
Цель исследования. Анализ литературных данных, посвященных позвоночно-тазовым взаимодействиям, разработка рекомендаций по устранению патологий позвоночника и таза на основе проанализированных данных. В статье подробно рассматриваются классификации нарушений позвоночно-тазового взаимодействия, а также описываются методы их коррекции, которые необходимо учитывать при выполнении ТЭТБС.
Материалы и методы. Проведен поиск публикаций в электронных базах данных PubMed и eLibrary.ru по следующим поисковым терминам: «позвоночно-тазовая подвижность, тотальное эндопротезирование тазобедренного сустава, артропластика тазобедренного сустава», “vertebral-pelvic mobility, total hip replacement, hip arthroplasty”. Временной интервал поиска не ограничивался. В настоящее исследование включались статьи, опубликованные на русском и английском языках.
Результаты и обсуждение. Ориентацию тазового компонента следует планировать в соответствии с оценкой движений тазобедренного сустава, чтобы расположить тазовую часть эндопротеза в соответствии с новой безопасной зоной и комбинированным сагиттальным индексом. Однако хирург должен учитывать, что послеоперационная подвижность таза и позвоночника может отличаться от предоперационной из-за контрактуры сустава или физиологического старения позвоночника. В настоящее время еще не определено, как часто эти изменения приводят к выходу тазового компонента эндопротеза за пределы своей позиции и пространственного расположения, увеличивая риск вывиха.
Заключение. Правильное понимание взаимосвязи тазобедренного сустава и позвоночника, а также влияние их взаимодействий на позиционирование вертлужного компонента является определяющим моментом в снижении риска вывихов. «Безопасная зона» Левиннека по-прежнему может использоваться в качестве ориентира для большинства пациентов, однако пациенты с нарушениями спинально-тазовой подвижности должны быть четко идентифицированы.

Об авторе

С. Ю. Глазунов
Башкирский государственный медицинский университет
Россия

Станислав Юрьевич Глазунов — аспирант кафедры травматологии и ортопедии с курсом ИДПО

Уфа


Конфликт интересов:

Автор заявляет об отсутствии явных и потенциальных конфликтов интересов.



Список литературы

1. Minasov BSh, Minasov TB, Glazunov SYu, Kabirov RD, Khalikov AA. Offset as an important parameter in total hip replacement. Modern Problems of Science and Education. 2023;(5). (In Russ.). DOI: https://doi.org/10.17513/spno.32933.

2. Papachristou GC, Pappa E, Chytas D, Masouros PT, Nikolaou VS. Total hip replacement in developmental hip dysplasia: A narrative review. Cureus. 2021;13(4):e14763. DOI: https://doi.org/10.7759/cureus.14763.

3. Karachalios TS, Koutalos AA, Komnos GA. Total hip arthroplasty in patients with osteoporosis. HIP International. 2020;30(4):370–379. DOI: https://doi.org/10.1177/1120700019883244.

4. Minasov BSh, Minasov TB, Kabirov RD, Glazunov SY, Khalikov AA. Comparison of the results of total hip replacement in patients with hip fracture and osteoarthritis. Modern Problems of Science and Education. 2023;(1). (In Russ.). DOI: https://doi.org/10.17513/spno.32300.

5. Szczesiul J, Bielecki M. A review of total hip arthroplasty comparison in FNF and OA patients. Advances in Orthopedics. 2021;2021:5563500. DOI: https://doi.org/10.1155/2021/5563500.

6. Szymski D, Walter N, Krull P, Melsheimer O, Schindler M, Grimberg A, et al. Comparison of mortality rate and septic and aseptic revisions in total hip arthroplasties for osteoarthritis and femoral neck fracture: An analysis of the German Arthroplasty Registry. Journal of Orthopaedics and Traumatology. 2023;24(1):29. DOI: https://doi.org/10.1186/s10195-023-00711-9.

7. Buckland AJ, Puvanesarajah V, Vigdorchik J, Schwarzkopf R, Jain A, Klineberg EO, et al. Dislocation of a primary total hip arthroplasty is more common in patients with a lumbar spinal fusion. The Bone & Joint Journal. 2017;99‑B(5):585–591. DOI: https://doi.org/10.1302/0301-620X.99B5.BJJ‑2016-0657.R1.

8. Malkani AL, Himschoot KJ, Ong KL, Lau EC, Baykal D, Dimar JR, et al. Does timing of primary total hip arthroplasty prior to or after lumbar spine fusion have an effect on dislocation and revision rates? Journal of Arthroplasty. 2019;34(5):907–911. DOI: https://doi.org/10.1016/j.arth.2019.01.009.

9. Onggo JR, Nambiar M, Onggo JD, Phan K, Ambikaipalan A, Babazadeh S, et al. Comparable dislocation and revision rates for patients undergoing total hip arthroplasty with subsequent or prior lumbar spinal fusion: A meta-analysis and systematic review. European Spine Journal. 2021;30(1):63–70. DOI: https://doi.org/10.1007/s00586-020-06635‑w.

10. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. The Journal of Bone and Joint Surgery. American Volume. 1978;60(2):217–220. PMID: https://pubmed.gov/641088.

11. Abdel MP, von Roth P, Jennings MT, Hanssen AD, Pagnano MW. What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clinical Orthopaedics and Related Research. 2016;474(2):386–391. DOI: https://doi.org/10.1007/s11999-015-4432-5.

12. Lazennec JY, Charlot N, Gorin M, Roger B, Arafati N, Bissery A, et al. Hip-spine relationship: A radio- anatomical study for optimization in acetabular cup positioning. Surgical and Radiologic Anatomy. 2004;26(2):136–144. DOI: https://doi.org/10.1007/s00276-003-0195‑x.

13. Lazennec JY, Riwan A, Gravez F, Rousseau MA, Mora N, Gorin M, et al. Hip spine relationships: Application to total hip arthroplasty. HIP International. 2007;17(5 Suppl):S91–104. DOI: https://doi.org/10.1177/112070000701705S12.

14. Lazennec JY, Brusson A, Rousseau MA. Hip-spine relations and sagittal balance clinical consequences. European Spine Journal. 2011;20(5):686. DOI: https://doi.org/10.1007/s00586-011-1937-9.

15. Chelpachenko OB, Zherdev KV, Fisenko AP, Butenko AS, Yatsyk SP, Dyakonova EY, et al. Surgical correction of the trunk balance in case of spinal deformities and instability of hip joints. Russian Journal of Pediatric Surgery. 2020;24(4):256–265. (In Russ.). DOI: https://doi.org/10.18821/1560-9510-2020-24-4-256-265.

16. Attenello JD, Harpstrite JK. Implications of spinopelvic mobility on total hip arthroplasty: Review of current literature. Hawai’i Journal of Health & Social Welfare. 2019;78(11 Suppl 2):31–40. PMID: https://pubmed.gov/31773109.

17. Heckmann ND, Lieberman JR. Spinopelvic biomechanics and total hip arthroplasty: A primer for clinical practice. Journal of the American Academy of Orthopaedic Surgeons. 2021;29(18):e888–e903. DOI: https://doi.org/10.5435/JAAOS-D‑20-00953.

18. Heckmann N, McKnight B, Stefl M, Trasolini NA, Ike H, Dorr LD. Late dislocation following total hip arthroplasty: Spinopelvic imbalance as a causative factor. The Journal of Bone and Joint Surgery. American Volume. 2018;100(21):1845–1853. DOI: https://doi.org/10.2106/JBJS.18.00078.

19. Khokhlov IV, Smyshlyaev IA, Rogoschenkova AV, Gazi YK, Gilfanov SI. The effect of the sagittal balance of the vertebro-pelve-femoral complex on the position of the cup during total hip replacement. Kremlin Medicine Journal. 2022;(3):99–106. (In Russ.). DOI: https://doi.org/10.26269/7r60-6d96.

20. Kudyashev AL, Khominets VV, Shapovalov VM, Miroevskiy FV. Coxo vertebral syndrome and its significance in the complex treatment of patients with a combination of degenerative-dystrophic pathology of the hip joint and spine. N. N. Priorov Journal of Traumatology and Orthopedics. 2015;22(2):76–82. (In Russ.). DOI: https://doi.org/10.17816/vto201522276-82.

21. Pierrepont JW, Feyen H, Miles BP, Young DA, Baré JV, Shimmin AJ. Functional orientation of the acetabular component in ceramic-on-ceramic total hip arthroplasty and its relevance to squeaking. The Bone & Joint Journal. 2016;98‑B(7):910–916. DOI: https://doi.org/10.1302/0301-620X.98B7.37062.

22. Rivière C, Lazennec JY, Van Der Straeten C, Auvinet E, Cobb J, Muirhead-Allwood S. The influence of spinehip relations on total hip replacement: A systematic review. Orthopaedics & Traumatology: Surgery & Research. 2017;103(4):559–568. DOI: https://doi.org/10.1016/j.otsr.2017.02.014.

23. Rivière C, Hardijzer A, Lazennec JY, Beaulé P, Muirhead-Allwood S, Cobb J. Spine-hip relations add understandings to the pathophysiology of femoro-acetabular impingement: A systematic review. Orthopaedics & Traumatology: Surgery & Research. 2017;103(4):549–557. DOI: https://doi.org/10.1016/j.otsr.2017.03.010.

24. Kanawade V, Dorr LD, Wan Z. Predictability of acetabular component angular change with postural shift from standing to sitting position. The Journal of Bone and Joint Surgery. American Volume. 2014;96(12):978– 986. DOI: https://doi.org/10.2106/JBJS.M.00765.

25. Snijders TE, Schlösser TPC, Heckmann ND, Tezuka T, Castelein RM, Stevenson RP, et al. The effect of functional pelvic tilt on the three-dimensional acetabular cup orientation in total hip arthroplasty dislocations. Journal of Arthroplasty. 2021;36(6):2184–2188.e1. DOI: https://doi.org/10.1016/j.arth.2020.12.055.

26. Haffer H, Wang Z, Hu Z, Hipfl C, Pumberger M. Acetabular cup position differs in spinopelvic mobility types: a prospective observational study of primary total hip arthroplasty patients. Archives of Orthopaedic and Trauma Surgery. 2022;142(10):2979–2989. DOI: https://doi.org/10.1007/s00402-021-04196-1.

27. Yang G, Li Y, Zhang H. The influence of pelvic tilt on the anteversion angle of the acetabular prosthesis. Orthopaedic Surgery. 2019;11(5):762–769. DOI: https://doi.org/10.1111/os.12543.

28. Esposito CI, Miller TT, Kim HJ, Barlow BT, Wright TM, Padgett DE, et al. Does degenerative lumbar spine disease influence femoroacetabular flexion in patients undergoing total hip arthroplasty? Clinical Orthopaedics and Related Research. 2016;474(8):1788–1797. DOI: https://doi.org/10.1007/s11999-016-4787-2.

29. Tanabe H, Homma Y, Yanagisawa N, Watari T, Ishii S, Shirogane Y, et al. Validation of a preoperative formula to estimate postoperative pelvic sagittal alignment and mobility before performing total hip arthroplasty for patients with hip osteoarthritis. Arthroplasty. 2023;5(1):13. DOI: https://doi.org/10.1186/s42836-023-00171‑w.

30. Watanabe S, Choe H, Kobayashi N, Ike H, Kobayashi D, Inaba Y. Prediction of pelvic mobility using whole-spinal and pelvic alignment in standing and sitting position in total hip arthroplasty patients. Journal of Orthopaedic Surgery. 2021;29(2):23094990211019099. DOI: https://doi.org/10.1177/23094990211019099.

31. Tsai CJ, Yang ZY, Wu TY, Tsai YT, Wang JJ, Liaw CK. The transverse mechanical axis of the pelvis for post-operative evaluation of total hip arthroplasty. Biomedicines. 2023;11(5):1397. DOI: https://doi.org/10.3390/biomedicines11051397.

32. Stefl M, Lundergan W, Heckmann N, McKnight B, Ike H, Murgai R, et al. Spinopelvic mobility and acetabular component position for total hip arthroplasty. The Bone & Joint Journal. 2017;99(1):37–45. DOI: https://doi.org/10.1302/0301-620X.99B1.BJJ‑2016-0415.R1.

33. Luthringer TA, Vigdorchik JM. A preoperative workup of a “hip-spine” total hip arthroplasty patient: A simplified approach to a complex problem. Journal of Arthroplasty. 2019;34(7 Suppl):S57–S70. DOI: https://doi.org/10.1016/j.arth.2019.01.012.

34. Sharma AK, Vigdorchik JM. The hip-spine relationship in total hip arthroplasty: How to execute the plan. Journal of Arthroplasty. 2021;36(7 Suppl):S111–S120. DOI: https://doi.org/10.1016/j.arth.2021.01.008.

35. Elbuluk AM, Wright-Chisem JI, Vigdorchik JM, Nunley RM. Applying the hip-spine relationship: What X‑rays and measurements are important? Journal of Arthroplasty. 2021;36(7 Suppl):S94–S98. DOI: https://doi.org/10.1016/j.arth.2021.02.058.

36. Phan D, Bederman SS, Schwarzkopf R. The influence of sagittal spinal deformity on anteversion of the acetabular component in total hip arthroplasty. The Bone & Joint Journal. 2015;97‑B(8):1017–1023. DOI: https://doi.org/10.1302/0301-620X.97B8.35700.

37. Pierrepont J, Yang L, Arulampalam J, Stambouzou C, Miles B, Li Q. The effect of seated pelvic tilt on posterior edge-loading in total hip arthroplasty: A finite element investigation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2018;232(3):241–248. DOI: https://doi.org/10.1177/0954411917752028.

38. Baruffaldi F, Mecca R, Stea S, Beraudi A, Bordini B, Amabile M, et al. Squeaking and other noises in patients with ceramic-on-ceramic total hip arthroplasty. HIP International. 2020;30(4):438–445. DOI: https://doi.org/10.1177/1120700019864233.

39. Pierrepont J, Hawdon G, Miles BP, Connor BO’, Baré J, Walter LR, et al. Variation in functional pelvic tilt in patients undergoing total hip arthroplasty. The Bone & Joint Journal. 2017;99‑B(2):184–191. DOI: https://doi.org/10.1302/0301-620X.99B2.BJJ‑2016-0098.R1.

40. Kleeman-Forsthuber L, Vigdorchik JM, Pierrepont JW, Dennis DA. Pelvic incidence significance relative to spinopelvic risk factors for total hip arthroplasty instability. The Bone & Joint Journal. 2022;104‑B(3):352–358. DOI: https://doi.org/10.1302/0301-620X.104B3.BJJ‑2021-0894.R1.

41. van Bosse HJ, Lee D, Henderson ER, Sala DA, Feldman DS. Pelvic positioning creates error in CT acetabular measurements. Clinical Orthopaedics and Related Research. 2011;469(6):1683–1691. DOI: https://doi.org/10.1007/s11999-011-1827-9.

42. Abdel Hady DA, Abd El-Hafeez T. Predicting female pelvic tilt and lumbar angle using machine learning in case of urinary incontinence and sexual dysfunction. Scientific Reports. 2023;13(1):17940. DOI: https://doi.org/10.1038/s41598-023-44964-0.

43. Ueno T, Kabata T, Kajino Y, Ohmori T, Yoshitani J, Ueoka K, et al. Tilt-adjusted cup anteversion in patients with severe backward pelvic tilt is associated with the risk of iliopsoas impingement: A three-dimensional implantation simulation. Clinical Orthopaedics and Related Research. 2019;477(10):2243–2254. DOI: https://doi.org/10.1097/CORR.0000000000000830.

44. Ueno T, Kabata T, Kajino Y, Ohmori T, Yoshitani J, Ueoka K, et al. Tilt-adjusted cup anteversion in patients with severe backward pelvic tilt is associated with the risk of iliopsoas impingement: A three-dimensional implantation simulation. Clinical Orthopaedics and Related Research. 2019;477(10):2243–2254. DOI: https://doi.org/10.1097/CORR.0000000000000830.

45. Wan Z, Malik A, Jaramaz B, Chao L, Dorr LD. Imaging and navigation measurement of acetabular component position in THA. Clinical Orthopaedics and Related Research. 2009;467(1):32–42. DOI: https://doi.org/10.1007/s11999-008-0597-5.

46. Kitamura K, Fujii M, Iwamoto M, Ikemura S, Hamai S, Motomura G, et al. Is anterior rotation of the acetabulum necessary to normalize joint contact pressure in periacetabular osteotomy? A finite-element analysis study. Clinical Orthopaedics and Related Research. 2022;480(1):67–78. DOI: https://doi.org/10.1097/CORR.0000000000001893.

47. Vigdorchik JM, Muir JM, Buckland A, Elbuluk AM, Alguire A, Schipperet J, et al. Undetected intraoperative pelvic movement can lead to inaccurate acetabular cup component placement during total hip arthroplasty: A mathematical simulation estimating change in cup position. Journal of Hip Surgery. 2017;1(4):186–193. DOI: https://doi.org/10.1055/s‑0038-1635103.

48. Schwarzkopf R, Muir JM, Paprosky WG, Seymour S, Cross MB, Vigdorchik JM. Quantifying pelvic motion during total hip arthroplasty using a new surgical navigation device. Journal of Arthroplasty. 2017;32(10):3056–3060. DOI: https://doi.org/10.1016/j.arth.2017.04.046.

49. Seagrave KG, Troelsen A, Malchau H, Husted H, Gromov K. Acetabular cup position and risk of dislocation in primary total hip arthroplasty. Acta Orthopaedica. 2017;88(1):10–17. DOI: https://doi.org/10.1080/17453674.2016.1251255.

50. Tanino H, Nishida Y, Mitsutake R, Ito H. Accuracy of a portable accelerometer-based navigation system for cup placement and intraoperative leg length measurement in total hip arthroplasty: A cross-sectional study. BMC Musculoskeletal Disorders. 2021;22(1):299. DOI: https://doi.org/10.1186/s12891-021-04167‑y.

51. Grammatopoulos G, Falsetto A, Sanders E, Weishorn J, Gill HS, Beaulé PE, et al. Integrating the combined sagittal index reduces the risk of dislocation following total hip replacement. The Journal of Bone and Joint Surgery. American Volume. 2022;104(5):397–411. DOI: https://doi.org/10.2106/JBJS.21.00432.

52. Grammatopoulos G, Falsetto A, Sanders E, Weishorn J, Gill HS, Beaulé PE, et al. Integrating the combined sagittal index reduces the risk of dislocation following total hip replacement. The Journal of Bone and Joint Surgery. American Volume. 2022;104(5):397–411. DOI: https://doi.org/10.2106/JBJS.21.00432.

53. Esposito CI, Carroll KM, Sculco PK, Padgett DE, Jerabek SA, Mayman DJ. Total hip arthroplasty patients with fixed spinopelvic alignment are at higher risk of hip dislocation. Journal of Arthroplasty. 2018;33(5): 1449–1454. DOI: https://doi.org/10.1016/j.arth.2017.12.005.

54. Tezuka T, Heckmann ND, Bodner RJ, Dorr LD. Functional safe zone is superior to the lewinnek safe zone for total hip arthroplasty: Why the Lewinnek safe zone is not always predictive of stability. Journal of Arthroplasty. 2019;34(1):3–8. DOI: https://doi.org/10.1016/j.arth.2018.10.034.

55. Sariali E, Lazennec JY, Khiami F, Gorin M, Catonne Y. Modification of pelvic orientation after total hip replacement in primary osteoarthritis. HIP International. 2009;19(3):257–263. DOI: https://doi.org/10.1177/112070000901900312.

56. Grammatopoulos G, Pandit HG, da Assunção R, McLardy-Smith P, De Smet KA, Gill HS, et al. The relationship between operative and radiographic acetabular component orientation: Which factors influence resultant cup orientation? The Bone & Joint Journal. 2014;96‑B(10):1290–1297. DOI: https://doi.org/10.1302/0301-620X.96B10.34100.

57. Gonzalez Della Valle A, Shanaghan K, Benson JR, Carroll K, Cross M, McLawhorn A, et al. Pelvic pitch and roll during total hip arthroplasty performed through a posterolateral approach. A potential source of error in free-hand cup positioning. International Orthopaedics. 2019;43(8):1823–1829. DOI: https://doi.org/10.1007/s00264-018-4141-2.

58. Wang WJ, Liu F, Zhu YW, Sun MH, Qiu Y, Weng WJ. Sagittal alignment of the spine-pelvis-lower extremity axis in patients with severe knee osteoarthritis: A radiographic study. Bone & Joint Research. 2016;5(5): 198–205. DOI: https://doi.org/10.1302/2046–3758.55.2000538.

59. Haffer H, Adl Amini D, Perka C, Pumberger M. The impact of spinopelvic mobility on arthroplasty: Implications for hip and spine surgeons. Journal of Clinical Medicine. 2020;9(8):2569. DOI: https://doi.org/10.3390/jcm9082569.


Дополнительные файлы

Рецензия

Для цитирования:


Глазунов СЮ. Влияние позвоночно-тазовой подвижности на технологию и исходы тотального эндопротезирования тазобедренного сустава. Уральский медицинский журнал. 2024;23(5):114–124. https://doi.org/10.52420/umj.23.5.114. EDN: WAHVXR

For citation:


Glazunov SY. The Effect of Vertebral-Pelvic Mobility on the Technology and Outcomes of Total Hip Replacement. Ural Medical Journal. 2024;23(5):114–124. (In Russ.) https://doi.org/10.52420/umj.23.5.114. EDN: WAHVXR

Просмотров: 186


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)