Дефицит альфа-1-антитрипсина у детей. Современный взгляд на проблему
https://doi.org/10.52420/umj.23.6.132
EDN: XDBAHW
Аннотация
Введение. Дефицит альфа-1-антитрипсина (AAT) — недостаток ингибитора протеаз, приводящий к деструкции легких и повреждению печени. Клинические проявления AAT сильно варьируются, зависят от фенотипа и факторов окружающей среды. Единственным доступным методом лечения дефицита AAT является заместительная терапия.
Цель работы — систематизировать текущие данные о патогенезе, клинических проявлениях и современных методах лечения дефицита AAT для повышения осведомленности педиатров об этой патологии.
Материалы и методы. Поиск литературы проводился в базах данных еLibrary.ru, PubMed, российских и зарубежных профильных медицинских журналах.
Результаты и обсуждение. Дефицит AAT вызывается мутациями в гене SERPINA1. В Европе распространенность дефицита AAT варьируется в пределах от 1 : 1 800 до 1 : 2 500 новорожденных. Мутации в гене приводят к неправильной сборке молекулы AAT (Z-белка) с последующим накоплением этих молекул и аномальной полимеризацией в гепатоцитах, ч то приводит к гепатиту. В результате недостаточной секреции в системный кровоток AAT ослабляется антипротеазная защита и усиливаются воспалительные процессы в легких. В настоящее время терапия, повышающая уровень сывороточного AAT, в которой используется белок, очищенный из плазмы здорового человека, остается единственным специфическим фармакологическим вмешательством, доступным для лечения дефицита AAT.
Заключение. Дефицит AAT — аутосомно-рецессивное заболевание, требующее знаний особенностей клинических проявлений, начиная с детского возраста. Существует большой потенциал в использовании генной терапии для лечения заболеваний, связанных с дефицитом AAT.
Об авторах
И. В. ВахловаРоссия
Ирина Вениаминовна Вахлова — доктор медицинских наук, профессор, заведующий кафедрой госпитальной педиатрии, директор, институт педиатрии и репродуктивной медицины
Екатеринбург
Конфликт интересов:
И. В. Вахлова — заместитель главного редактора «Уральского медицинского журнала»; не принимала участия в рассмотрении и рецензировании материала, а также принятии решения о его публикации. Остальные авторы заявляют об отсутствии явных и потенциальных конфликтов интересов.
Г. В. Федотова
Россия
Галина Викторовна Федотова — кандидат медицинских наук, доцент кафедры госпитальной педиатрии, институт педиатрии и репродуктивной медицины
Екатеринбург
М. С. Тимофеева
Россия
Мария Сергеевна Тимофеева — студент института педиатрии и репродуктивной медицины
Екатеринбург
Е. С. Тимофеев
Россия
Евгений Сергеевич Тимофеев — студент института педиатрии и репродуктивной медицины
Екатеринбург
Список литературы
1. Pervishko OV, Lupash NG, Ivanenko AS, Larina VG, Vlasova ML. Alström syndrom: A clinical case. Ural Medical Journal. 2024;23(3):136–145. (In Russ.). DOI: https://doi.org/10.52420/umj.23.3.136.
2. Kostromina PG, Koryakina OV, Ovsova OV, Salomatov KS. Clinical case of autosomo-dominant Dopa-responsive torsion dystonia. Ural Medical Journal. 2018;(11):43–45. (In Russ.). EDN: https://elibrary.ru/vnrmen.
3. Putcha N, Drummond MB, Wise RA, Hansel NN. Comorbidities and chronic obstructive pulmonary disease: prevalence, influence on outcomes, and management. Seminars in Respiratory and Critical Care Medicine. 2015;36(4):575–591. DOI: https://doi.org/10.1055/s-0035-1556063.
4. Fairbanks KD, Tavill AS. Liver disease in alpha 1-antitrypsin deficiency: A review. American Journal of Gastroenterology. 2008;103(8):2136–2141. Available at: https://clck.ru/3EiYnZ [accessed 20 August 2024].
5. Dasí F. Alpha-1 antitrypsin deficiency. Medicina Clínica. 2024;162(7):336–342. DOI: https://doi.org/10.1016/j.medcli.2023.10.014.
6. McLean C, Greene CM, McElvaney NG. Gene targeted therapeutics for liver disease in alpha-1 antitrypsin deficiency. Biologics. 2009;3:63–75. PMID: https://pubmed.gov/19707397.
7. Stoller JK, Aboussouan LS. A review of α1-antitrypsin deficiency. American Journal of Respiratory and Critical Care Medicine. 2012;185(3):246–259. DOI: https://doi.org/10.1164/rccm.201108-1428CI.
8. Sharp HL. Alpha-1-antitrypsin deficiency. Hospital Practice. 1971;6(5):83–96. DOI: https://doi.org/10.1080/21548331.1971.11706032.
9. Molloy K, Hersh CP, Morris VB, Carroll TP, O’Connor CA, Lasky-Su JA, et al. Clarification of the risk of chronic obstructive pulmonary disease in α1-antitrypsin deficiency PiMZ heterozygotes. American Journal of Respiratory and Critical Care Medicine. 2014;189(4):419–427. DOI: https://doi.org/10.1164/rccm.201311-1984OC.
10. Lomas DA. Twenty years of polymers: A personal perspective on alpha-1 antitrypsin deficiency. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2013;10(Suppl 1):17–25. DOI: https://doi.org/10.3109/15412555.2013.764401.
11. Teckman JH. Liver disease in alpha-1 antitrypsin deficiency: Current understanding and future therapy. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2013;10(Suppl 1):35–43. DOI: https://doi.org/10.3109/15412555.2013.765839.
12. Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature. 1992;357(6379):605–607. DOI: https://doi.org/10.1038/357605a0.
13. American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society statement: Standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. American Journal of Respiratory and Critical Care Medicine. 2003;168(7):818–900. DOI: https://doi.org/10.1164/rccm.168.7.818.
14. Larshina EA, Milovanova NV, Kamenets EA. Alpha-1-antitrypsin deficiency: diagnosis and treatment (literature review). Medical Genetics. 2021;20(1):12–24. (In Russ.). DOI: https://doi.org/10.25557/2073-7998.2021.01.12-24.
15. Belevsky AS, Karchevskaya NA, Ilkovich MM, Gembitskaya TE, Leshchenko IV, Zakharova E, et al. Alpha-1-antitrypsin deficiency in adults (draſt federal recommendations). Practical Pulmonology. 2017;3: 98–108. (In Russ.). EDN: https://elibrary.ru/ylyury.
16. Volynets GV, Nikitin AV. Pathophysiological aspects of liver damage in children with alpha-1-antitrypsin deficiency. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020; 65(1):11–21. (In Russ.). DOI: https://doi.org/10.21508/1027-4065-2020-65-1-11-21.
17. Udall JN, Bloch KJ, Walker WA. Transport of proteases across neonatal intestine and development of liver disease in infants with alpha-1 antitrypsin deficiency. The Lancet. 1982;319(8287):1441–1443. DOI: https://doi.org/10.1016/S0140-6736(82)92454-0.
18. Crystal RG. The alpha 1-antitrypsin gene and its deficiency states. Trends in Genetics. 1989;5(12):411–417. DOI: https://doi.org/10.1016/0168-9525(89)90200-x.
19. Volynets GV. Pathophysiology of liver damage in children with alpha-1 antitrypsin deficiency. Medical Opponent. 2019;4(8):53–63. (In Russ.). EDN: https://elibrary.ru/gpdjfh.
20. Chapman KR, Chorostowska-Wynimko J, Koczulla AR, Ferrarotti I, McElvaney NG. Alpha 1 antitrypsin to treat lung disease in alpha 1 antitrypsin deficiency: Recent developments and clinical implications. International Journal of Chronic Obstructive Pulmonary Disease. 2018;13:419–432. DOI: https://doi.org/10.2147/COPD.S149429.
21. Meseeha M, Sankari A, Attia M. Alpha-1 antitrypsin deficiency. In: StatPearls. Treasure Island: StatPearls Publishing; 2024. PMID: https://pubmed.ncbi.gov/28723059.
22. Guseinova AD. Alpha-1-antitrypsin deficiency under the “mask” of chronic hepatitis. Russian Pediatric Journal. 2024;27(1S):23–24. (In Russ.). EDN: https://elibrary.ru/DVKWPG.
23. Parakhina DV, Grebenkin DI. Liver cirrhosis as a result of alpha-1-antitrypsin deficiency in a young child. Russian Pediatric Journal. 2024;27(1S):48. (In Russ.). EDN: https://elibrary.ru/RSXFMU.
24. Handy MV, Nikiforova TI, Nikolaeva LE. Alpha-1 antitrypsin deficiency in a child in the Republic of Sakha (Yakutia). Bulletin of the North-Eastern Federal University. MK Ammosova. Series: Medical Sciences. 2019;(1):47–50. EDN: https://elibrary.ru/pcdaht.
25. Melnik SI, Vlasov NN, Pinevskaya MV, Orlova EA, Starevskaya SV, MelnikovaI. Alpha-1-antitrypsin defi-ciency in children: A case series. Current Pediatrics. 2016;15(6):619–624. DOI: https://doi.org/10.15690/vsp.v15i6.1660.
26. Rahaghi FF. Alpha-1 antitrypsin deficiency research and emerging treatment strategies: What’s down the road? Therapeutic Advancesin Chronic Disease. 2021;29 (12):283–291. DOI: https://doi.org/10.1177/20406223211014025.
27. Ferrarotti I, Ottaviani S, De Silvestri A, Corsico AG. Update on α1-antitrypsin deficiency. Breathe. 2018; 14(2):e17–e24. DOI: https://doi.org/10.1183/20734735.015018.
28. Townsend SA, Edgar RG, Ellis PR, Kantas D, Newsome PN, Turner AM. Systematic review: The natural history of alpha-1 antitrypsin deficiency, and associated liver disease. Alimentary Pharmacology & Therapeutics. 2018;47(7):877–885. DOI: https://doi.org/10.1111/apt.14537.
29. Courtney M, Buchwalder A, Tessier LH, Jaye M, Benavente A, Balland A, et al. High-level production of biologically active human alpha 1-antitrypsin in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 1984;81(3):669–673. DOI: https://doi.org/10.1073/pnas.81.3.669.
30. Tamer IM, Chisti Y. Production and recovery of recombinant protease inhibitor α1-antitrypsin. Enzyme and Microbial Technology. 2001;29(10):611–620. DOI: https://doi.org/10.1016/S0141-0229(01)00444-6.
31. Ghaedi M, Sahebghadam Lotfi A, Soleimani M. Expression of recombinant alpha-1 antitrypsin in CHO and COS-7 cell lines using lentiviral vector. Iranian Journal of Biotechnology. 2009;7(3):148–156. Available at: https://clck.ru/3EiedZ [accessed 20August 2024].
32. Falkenhagen A, Asad S, Read SE. Lentiviral expression system for the purification of secreted proteins from human cell cultures. BMC Biotechnology. 2016;16:66. DOI: https://doi.org/10.1186/s12896-016-0288-3.
33. Bjursell M, Porritt MJ, Ericson E, Taheri-Ghahfarokhi A, Clausen M, Magnusson L, et al. Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates α1-antitrypsin deficiency phenotype. eBioMedicine. 2018;29:104–111. DOI: https://doi.org/10.1016/j.ebiom.2018.02.015.
34. Shen S, Sanchez ME, Blomenkamp K, Corcoran EM, Marco E, Yudkoff CJ, et al. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Human Gene Therapy. 2018;29: 861–873. DOI: https://doi.org/10.1089/hum.2017.227.
35. Gruntman AM, Flotte TR. Therapeutics: Gene therapy for alpha-1 antitrypsin deficiency. In: Borel F, Mueller C (eds.). Alpha-1 antitrypsin deficiency: Methods and protocols. New York: Humana; 2017. P. 267–275. DOI: https://doi.org/10.1007/978-1-4939-7163-3_27.
36. Chiuchiolo MJ, Crystal RG. Gene therapy for alpha-1 antitrypsin deficiency lung disease. Annals of the American Thoracic Society. 2016;13(Suppl 4):352–369. DOI: https://doi.org/10.1513/AnnalsATS.201506-344KV.
37. Strnad P, McElvaney NG, Lomas DA. Alpha1-antitrypsin deficiency. The New England Journal of Medicine. 2020;382(15):1443–1455. DOI: https://doi.org/10.1056/NEJMra1910234.
38. Ruzycki CA, Montoya D, Irshad H, Cox J, Zhou Y, McDonald JD, et al. Inhalation delivery of nucleic acid gene therapies in preclinical drug development. Expert Opinion on Drug Delivery. 2023;20(8):1097–1113. DOI: https://doi.org/10.1080/17425247.2023.2261369.
39. Ledley FD, Woo SLC. Molecular basis of alpha 1-antitrypsin deficiency and its potential therapy by gene transfer. Journal of Inherited Metabolic Disease. 1986;9(S1):85–91. DOI: https://doi.org/10.1007/BF01800861.
40. Ledley FD, Grenett HE, McGinnis-Shelnutt M, Woo SL. Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(2):409–413. DOI: https://doi.org/10.1073/pnas.83.2.409.
41. Garver RI Jr, Chytil A, Karlsson S, Fells GA, Brantly ML, Courtney M, et al. Production of glycosylated physiologically “normal” human alpha 1-antitrypsin by mouse fibroblasts modified by insertion of a human alpha 1-antitrypsin cDNA using a retroviral vector. Proceedings of the National Academy of Sciences of the United States of America. 1987;84(4):1050–1054. DOI: https://doi.org/10.1073/pnas.84.4.1050.
42. Rosenfeld MA, Siegfried W, Yoshimura K, Yoneyama K, Fukayama M, Stier LE, et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science. 1991; 252(5004):431–434. DOI: https://doi.org/10.1126/science.2017680.
43. Wozniak J, Wandtke T, Kopinski P, Chorostowska-Wynimko J. Challenges and prospects for alpha-1 antitrypsin deficiency gene therapy. Human Gene Therapy. 2015;26(11):709–718. DOI: https://doi.org/10.1089/hum.2015.044.
44. Kay MA, Baley P, Rothenberg S, Leland F, Fleming L, Ponder KP, et al. Expression of human alpha 1-antitrypsin in dogs aſter autologous transplantation of retroviral transduced hepatocytes. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(1):89–93. DOI: https://doi.org/10.1073/pnas.89.1.89.
45. Kay MA, Graham F, Leland F, Woo SL. Therapeutic serum concentrations of human alpha-1-antitrypsin aſter adenoviral-mediated gene transfer into mouse hepatocytes. Hepatology. 1995;21(3):815–819. PMID: https://pubmed.gov/7875680.
46. Gregory SM, Nazir SA, Metcalf JP. Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virology. 2011;6(3):357–374. DOI: https://doi.org/10.2217/fvl.11.6.
47. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, et al. Current clinical applications of in vivo gene therapy with AAVs. Molecular Therapy. 2021;29(2):464–488. DOI: https://doi.org/10.1016/j.ymthe.2020.12.007.
48. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery. 2019;18(5):358–378. DOI: https://doi.org/10.1038/s41573-019-0012-9.
49. Gruntman AM, Flotte TR. Progress with recombinant adeno-associated virus vectors for gene therapy of alpha-1 antitrypsin deficiency. Human Gene Therapy Methods. 2015;26(3):77–81. DOI: https://doi.org/10.1089/hgtb.2015.086.
50. Lorincz R, Curiel DT. Advances in alpha-1 antitrypsin gene therapy. American Journal of Respiratory Cell and Molecular Biology 2020;63(5):560–570. DOI: https://doi.org/10.1165/rcmb.2020-0159PS.
51. Arjomandnejad M, Sylvia K, Blackwood M, Nixon T, Tang Q, Muhuri M, et al. Modulating immune responses to AAV by expanded polyclonal T-regs and capsid specific chimeric antigen receptor T-regulatory cells. Molecular Therapy Methods & Clinical Development. 2021;23:490–506. DOI: https://doi.org/10.1016/j.omtm.2021.10.010.
52. Gruntman AM, Gernoux G, Tang Q, Ye GJ, Knop DR, Wang G, et al. Bridging from Intramuscular to Limb Perfusion Delivery of rAAV: Optimization in a Non-human Primate Study. Molecular Therapy Methods & Clinical Development. 2019;13:233–242. DOI: https://doi.org/10.1016/j.omtm.2019.01.013.
53. Brigham KL, Lane KB, Meyrick B, Stecenko AA, Strack S, Cannon DR, et al. Transfection of nasal mucosa with a normal alpha1-antitrypsin gene in alpha1-antitrypsin-deficient subjects: Comparison with protein therapy. Human Gene Therapy. 2000;11(7):1023–1032. DOI: https://doi.org/10.1089/10430340050015338.
54. Flotte TR, Brantly ML, Spencer LT, Byrne BJ, Spencer CT, Baker DJ, et al. PhaseI Trial ofintramuscularinjection of a recombinant adeno-associatedvirus alpha 1-antitrypsin (rAAV2-CB-hAAT) genevector to AAT-deficient adults. Human Gene Therapy. 2004;15(1):93–128. DOI: https://doi.org/10.1089/10430340460732490.
55. Brantly ML, Spencer LT, Humphries M, Conlon TJ, Spencer CT, Poirier A, et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 α1-antitrypsin (AAT) vector in AAT-deficient adults. Human Gene Therapy. 2006;17(12):1177–1186. DOI: https://doi.org/10.1089/hum.2006.17.1177.
56. Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, Spencer LT, et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. PNAS. 2009;106(41):16363– 16368. DOI: https://doi.org/10.1073/pnas.0904514106.
57. Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: Interim results. Human Gene Therapy. 2011;22(10):1239–1247. DOI: https://doi.org/10.1089/hum.2011.053.
58. Mueller C, Chulay JD, Trapnell BC, Humphries M, Carey B, Sandhaus RA, et al. Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression. The Journal of Clinical Investigation. 2013;123(12):5310–5318. DOI: https://doi.org/10.1172/JCI70314.
59. Ertl HCJ. T cell-mediated immune responses to AAV and AAV vectors. Frontiers in Immunology. 2021;12:666666. DOI: https://doi.org/10.3389/fimmu.2021.666666.
60. Mingozzi F, Meulenberg JJ, Hui DJ, Basner-Tschakarjan E, Hasbrouck NC, Edmonson SA, et al. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood. 2009;114(10):2077–2086. PMID: https://pubmed.gov/19506302.
61. Mueller C, Gernoux G, Gruntman AM, Borel F, Reeves EP, Calcedo R, et al. 5 year expression and neutrophil defect repair aſter gene therapy in alpha-1 antitrypsin deficiency. Molecular Therapy. 2017;25(6):1387–1394. DOI: https://doi.org/10.1016/j.ymthe.2017.03.029.
62. Gernoux G, Gruntman AM, Blackwood M, Zieger M, Flotte TR, Mueller C. Muscle-directed delivery of an AAV1 vector leads to capsid-specific T cell exhaustion in nonhuman primates and humans. Molecular Therapy. 2020;28(3):747–757. DOI: https://doi.org/10.1016/j.ymthe.2020.01.004.
63. Greig JA, Peng H, Ohlstein J, Medina-Jaszek CA, Ahonkhai O, Mentzinger A, et al. Intramuscular injection of AAV8 in mice and macaques is associated with substantial hepatic targeting and transgene expression. PLoS One. 2014;9(11):112268. DOI: https://doi.org/10.1371/journal.pone.0112268.
64. De B, Heguy A, Leopold PL, Wasif N, Korst RJ, Hackett NR, et al. Intrapleural administration of a serotype 5adeno-associatedvirus coding for alpha1-antitrypsin mediates persistent, high lung and serum levels of alpha1- antitrypsin. Molecular Therapy. 2004;10(6):1003–1010. DOI: https://doi.org/10.1016/j.ymthe.2004.08.022.
65. Heguy A, Crystal RG. Intrapleural “outside-in” gene therapy: Therapeutics for organs of the chest via gene transfer to the pleura. Current Opinion in Molecular Therapeutics. 2005;7:440–453. PMID: https://pubmed.gov/16248279.
66. McClain LE, Davey MG, Zoltick PW, Limberis MP, Flake AW, Peranteau WH. Vector serotype screening for use in ovine perinatal lung gene therapy. Journal of Pediatric Surgery. 2016;51(6):879–884. DOI: https://doi.org/10.1016/j.jpedsurg.2016.02.048.
67. Martini SV, da Silva AL, Ferreira D, Gomes K, Ornellas FM, Lopes-Pacheco M, et al. Single tyrosine mutation in AAV8 vector capsid enhances gene lung delivery and does not alter lung morphofunction in mice. Cellular Physiology and Biochemistry. 2014;34(3):681–690. DOI: https://doi.org/10.1159/000363033.
68. Martini SV, Silva AL, Ferreira D, Rabelo R, Ornellas FM, Gomes K, et al. Tyrosine mutation in AAV9 capsid improves gene transfer to the mouse lung. Cellular Physiology and Biochemistry. 2016;39(2):544–553. DOI: https://doi.org/10.1159/000445646.
69. Tanash HA, Piitulainen E. Liver disease in adults with severe alpha-1-antitrypsin deficiency. Journal of Gastroenterology. 2019;54(6):541–548. DOI: https://doi.org/10.1007/s00535-019-01548-y.
70. Zamora MR, Ataya A. Lung and liver transplantationin patients with alpha-1 antitrypsin deficiency. Therapeutic Advancesin Chronic Disease. 2021;12:20406223211002988. DOI: https://doi.org/10.1177/20406223211002988.
71. Ozaki I, Zern MA, Liu S, Wei DL, Pomerantz RJ, Duan L. Ribozyme-mediated specific gene replacement of the alpha1-antitrypsin gene in human hepatoma cells. Journal of Hepatology. 1999;31(1):53–60. DOI: https://doi.org/10.1016/s0168-8278(99)80163-9.
72. Mueller C, Tang Q, Gruntman A, Blomenkamp K, Teckman J, Song L, et al. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Molecular Therapy. 2012;20(3):590–600. DOI: https://doi.org/10.1038/mt.2011.292. Erratum in: Molecular Therapy. 2013;21(2):493. DOI: https://doi.org/10.1038/mt.2012.275.
73. Remih K, Amzou S, Strnad P. Alpha1-antitrypsin deficiency: New therapies on the horizon. Current Opinion in Pharmacology. 2021;59:149–156. DOI: https://doi.org/10.1016/j.coph.2021.06.001.
74. Strnad P, Mandorfer M, Choudhury G, Griffiths W, Trautwein C, Loomba R, et al. Fazirsiran for liver disease associated with alpha1-antitrypsin deficiency. The New England Journal of Medicine. 2022;387(6):514–524. DOI: https://doi.org/10.1056/nejmoa2205416.
75. Song CQ, Wang D, Jiang T, O’Connor K, Tang Q, Cai L, et al. In vivo genome editing partially restores alpha1-antitrypsin in a murine model of AAT deficiency. Human Gene Therapy. 2018;29(8):853–860. DOI: https://doi.org/10.1089/hum.2017.225.
76. Hutchison DC. Alpha 1-antitrypsin deficiency in Europe: Geographical distribution of Pi types S and Z. Respiratory Medicine. 1998;92(3):367–377. DOI: https://doi.org/10.1016/s0954-6111(98)90278-5.
77. Flotte TR, Mueller C. Gene therapy for alpha-1 antitrypsin deficiency. Human Molecular Genetics. 2011; 20(R1):R87–R92. DOI: https://doi.org/10.1093/hmg/ddr156.
78. Conor A, Montoya D, Hammad I, Jason C, Yue Z, Jacob D, et al. Inhalation delivery of nucleic acid gene therapies in preclinical drug development. Expert Opinion on Drug Delivery. 2023;20(8):1097–1113. DOI: https://doi.org/10.1080/17425247.2023.2261369.
Дополнительные файлы
Рецензия
Для цитирования:
Вахлова ИВ, Федотова ГВ, Тимофеева МС, Тимофеев ЕС. Дефицит альфа-1-антитрипсина у детей. Современный взгляд на проблему. Уральский медицинский журнал. 2024;23(6):132–150. https://doi.org/10.52420/umj.23.6.132. EDN: XDBAHW
For citation:
Vakhlova IV, Fedotova GV, Timofeevа MS, Timofeev ES. Alpha-1 Antitrypsin Deficiency in Children. A Modern View of the Problem. Ural Medical Journal. 2024;23(6):132–150. (In Russ.) https://doi.org/10.52420/umj.23.6.132. EDN: XDBAHW