Современные методы фармакологической коррекции диабетической полинейропатии
https://doi.org/10.52420/umj.24.1.142
EDN: QPAAAB
Аннотация
Введение. Типичная диабетическая сенсомоторная полинейропатия — это одно из осложнений сахарного диабета, встречающееся у 50 % пациентов с этой патологией. Диабетическая нейропатия как осложнение сахарного диабета требует дополнительной медикаментозной коррекции для улучшения качества жизни больных.
Цель работы — изучить современные подходы и эффективность фармакологической коррекции диабетической полинейропатии на основании данных научной литературы за последние 10 лет.
Материалы и методы. Анализ и систематизация научных публикаций, размещенных в базах данных PubMed, Scopus, Web of Science за 2014–2023 гг.
Результаты и обсуждение. В работе представлена клиническая характеристика типичной диабетической полинейропатии. Особый акцент уделяется фармакологической коррекции и рассмотрению большинства классов препаратов, способных купировать болевой синдром. Тактика лечения выстраивается не только на купировании основных симптомов, но и устранении патофизиологического компонента заболевания. Однако лечение строится не только на симптоматической терапии, но и устранении патогенетических звеньев этой патологии.
Заключение. Диабетическая полинейропатия — грозное осложнение у лиц, страдающих сахарным диабетом. Основная задача лечения — купирование болевого синдрома и профилактика развития осложнений. Коррекция обеспечивается обширным выбором фармакологических препаратов.
Об авторах
В. Ю. ЦепелевРоссия
Василий Юрьевич Цепелев — кандидат медицинских наук, доцент кафедры фармакологии
Курск
Конфликт интересов:
Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов.
И. О. Масалева
Россия
Ирина Олеговна Масалева — кандидат медицинских наук, доцент кафедры неврологии и нейрохирургии
Курск
Конфликт интересов:
Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов.
Н. В. Болдина
Россия
Наталья Владимировна Болдина — кандидат медицинских наук, доцент кафедры фармакологии
Курск
Конфликт интересов:
Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов.
О. В. Полякова
Россия
Ольга Витальевна Полякова — кандидат медицинских наук, доцент кафедры фармакологии
Курск
Конфликт интересов:
Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов.
С. В. Гунов
Россия
Станислав Викторович Гунов — студент лечебного факультета
Курск
Конфликт интересов:
Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов.
Список литературы
1. Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Current Cardiology Reports. 2019;21(4):21. DOI: https://doi.org/10.1007/s11886-019-1107-y.
2. Lloyd-Jones DM, Allen NB, Anderson CAM, Black T, Brewer LC, Foraker RE, et al.; American Heart Association. Life’s essential 8: Updating and enhancing the American Heart Association’s construct of cardiovascular health: A presidential advisory from the American Heart Association. Circulation. 2022;146(5):18–43. DOI: https://doi.org/10.1161/CIR.0000000000001078.
3. Gylfadottir SS, Weeracharoenkul D, Andersen ST, Niruthisard S, Suwanwalaikorn S, Jensen TS. Painful and non-painful diabetic polyneuropathy: Clinical characteristics and diagnostic issues. Journal of Diabetes Investigation. 2019;10(5):1148–1157. DOI: https://doi.org/10.1111/jdi.13105.
4. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–154. DOI: https://doi.org/10.2337/dc16-2042.
5. Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, et al. Diabetic peripheral neuropathy: Epidemiology, diagnosis, and pharmacotherapy. Clinical Therapeutics. 2018;40(6):828–849. DOI: https://doi.org/10.1016/j.clinthera.2018.04.001.
6. Tesfaye S, Chaturvedi N, Eaton SEM, Ward JD, Manes C, Ionescu-Tirgoviste C, et al. Vascular risk factors and diabetic neuropathy. The New England Journal of Medicine. 2005;352(4):341–350. DOI: https://doi.org/10.1056/NEJMoa032782.
7. Mirian A, Aljohani Z, Grushka D, Florendo-Cumbermack A. Diagnosis and management of patients with polyneuropathy. Canadian Medical Association Journal. 2023;195(6):227–233. DOI: https://doi.org/10.1503/cmaj.220936.
8. Ziegler D, Papanas N, Vinik AI, Shaw JE. Epidemiology of polyneuropathy in diabetes and prediabetes. Handbook of Clinical Neurology. 2014;126:3–22. DOI: https://doi.org/10.1016/B978-0-444-53480-4.00001-1.
9. Sommer C, Geber C, Young P, Forst R, Birklein F, Schoser B. Polyneuropathies. Deutsches Arzteblatt International. 2018;115(6):83–90. DOI: https://doi.org/10.3238/arztebl.2018.0083.
10. Alleman CJM, Westerhout KY, Hensen M, Chambers C, Stoker M, Long S, et al. Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: A review of the literature. Diabetes Research and Clinical Practice. 2015;109(2):215–225. DOI: https://doi.org/10.1016/j.diabres.2015.04.031.
11. Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. The Lancet Neurology. 2014;13 (9):924–935. DOI: https://doi.org/10.1016/S1474-4422-(14)70102–4.
12. Didangelos T, Doupis J, Veves A. Painful diabetic neuropathy: Clinical aspects. Handbook of Clinical Neurology. 2014;126:53–61. DOI: https://doi.org/10.1016/B978-0-444-53480-4.00005-9.
13. Zochodne DW. The challenges of diabetic polyneuropathy: А brief update. Current Opinion in Neurology. 2019;32(5):666–675. DOI: https://doi.org/10.1097/WCO.0000000000000723.
14. Price R, Smith D, Franklin G, Gronseth G, Pignone M, David WS, et al. Oral and topical treatment of painful diabetic polyneuropathy: Practice guideline update summary: Report of the AAN guideline subcommittee. Neurology. 2022;98(1):31–43. DOI: https://doi.org/10.1212/WNL.0000000000013038.
15. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. Retinopathy, neuropathy, and foot care: Standards of care in diabetes — 2023. Diabetes Care. 2023;46(Suppl 1):203–215. DOI: https://doi.org/10.2337/dc23-S012.
16. Lunn MP, Hughes RA, Wiffen PJ. Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia. Cochrane Database of Systematic Reviews. 2014;2014(1):4–5. DOI: https://doi.org/10.1002/14651858.CD007115.pub3.
17. Spina E, Trifirò G, Caraci F. Clinically significant drug interactions with newer antidepressants. CNS Drugs. 2012;26(1):39–67. DOI: https://doi.org/10.2165/11594710-000000000-00000.
18. Ko YC, Lee CH, Wu CS, Huang YJ. Comparison of efficacy and safety of gabapentin and duloxetine in painful diabetic peripheral neuropathy: A systematic review and meta-analysis of randomised controlled trials. International Journal of Clinical Practice. 2021;75(11):e14576. DOI: https://doi.org/10.1111/ijcp.14576.
19. Wu CS, Huang YJ, Ko YC, Lee CH. Efficacy and safety of duloxetine in painful diabetic peripheral neuropathy: A systematic review and meta-analysis of randomized controlled trials. Systematic Reviews. 2023; 12(1):53. DOI: https://doi.org/10.1186/s13643-023-02185-6.
20. Liampas A, Rekatsina M, Vadalouca A, Paladini A, Varrassi G, Zis P. Pharmacological management of painful peripheral neuropathies: A systematic review. Pain and Therapy. 2021;10(1):55–68. DOI: https://doi.org/10.1007/s40122-020-00210-3.
21. van Nooten F, Treur M, Pantiri K, Stoker M, Charokopou M. Capsaicin 8% patch versus oral neuropathic pain medications for the treatment of painful diabetic peripheral neuropathy: A systematic literature review and network meta-analysis. Clinical Therapeutics. 2017;39(4):787–803.e18. DOI: https://doi.org/10.1016/j.clinthera.2017.02.010.
22. Calandre EP, Rico-Villademoros F, Slim M. Alpha2delta ligands, gabapentin, pregabalin and mirogabalin: A review of their clinical pharmacology and therapeutic use. Expert Review of Neurotherapeutics. 2016; 16(11):1263–1277. DOI: https://doi.org/10.1080/14737175.2016.1202764.
23. Guan Y, Ding X, Cheng Y, Fan D, Tan L, Wang Y, et al. Efficacy of pregabalin for peripheral neuropathic pain: Results of an 8-week, flexible-dose, double-blind, placebo-controlled study conducted in China. Clinical Therapeutics. 2011;33(2):159–166. DOI: https://doi.org/10.1016/j.clinthera.2011.02.007.
24. Yokoyama T, Arakawa N, Domon Y, Matsuda F, Inoue T, Kitano Y, et al. Pharmacological, pharmacokinetics and safety profiles of DS-5565, a novel A2δ ligand. Journal of the Neurological Sciences. 2013;333(S1):E535. DOI: https://doi.org/10.1016/j.jns.2013.07.1884.
25. Vinik A, Rosenstock J, Sharma U, Feins K, Hsu C, Merante D. Efficacy and safety of mirogabalin (DS-5565) for the treatment of diabetic peripheral neuropathic pain: A randomized, double-blind, placebo- and active comparator-controlled, adaptive proof-of-concept phase 2 study. Diabetes Care. 2014;37(12):3253–3261. DOI: https://doi.org/10.2337/dc14-1044.
26. Baba M, Matsui N, Kuroha M, Wasaki Y, Ohwada S. Mirogabalin for the treatment of diabetic peripheral neuropathic pain: A randomized, double-blind, placebo-controlled phase III study in Asian patients. Journal of Diabetes Investigation. 2019;10(5):1299–1306. DOI: https://doi.org/10.1111/jdi.13013.
27. De Lera Ruiz M, Kraus RL. Voltage-gated sodium channels: Structure, function, pharmacology, and clinical indications. Journal of Medicinal Chemistry. 2015;58(18):7093–7118. DOI: https://doi.org/10.1021/jm501981g.
28. Barbieri R, Nizzari M, Zanardi I, Pusch M, Gavazzo P. Voltage-gated sodium channel dysfunctions in neurological disorders. Life. 2023;13(5):1191. DOI: https://doi.org/10.3390/life13051191.
29. Dib-Hajj SD, Yang Y, Black JA, Waxman SG. The Na (V)1.7 sodium channel: From molecule to man. Nature Reviews Neuroscience. 2013;14(1):49–62. DOI: https://doi.org/10.1038/nrn3404.
30. Alexandrou AJ, Brown AR, Chapman ML, Estacion M, Turner J, Mis MA, et al. Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PLoS ONE. 2016;11(4):0152405. DOI: https://doi.org/10.1371/journal.pone.0152405.
31. Wang J, Zheng Y, Chen Y, Gu M, Gao Z, Nan F. Discovery of aryl sulfonamide-selective Nav1.7 inhibitors with a highly hydrophobic ethanoanthracene core. Acta Pharmacologica Sinica. 2020;41(3):293–302. DOI: https://doi.org/10.1038/s41401-019-0267-z.
32. Jo S, Bean BP. Lidocaine binding enhances inhibition of Nav1.7 channels by the sulfonamide PF-05089771. Molecular Pharmacology. 2020;97(6):377–383. DOI: https://doi.org/10.1124/mol.119.118380.
33. Buksnys T, Armstrong N, Worthy G, Sabatschus I, Boesl I, Buchheister B, et al. Systematic review and network meta-analysis of the efficacy and safety of lidocaine 700mg medicated plaster vs. pregabalin. Current Medical Research and Opinion. 2020;36(1):101–115. DOI: https://doi.org/10.1080/03007995.2019.1662687.
34. Moisset X, Bouhassira D, Avez Couturier J, Alchaar H, Conradi S, Delmotte MH, et al. Pharmacological and non-pharmacological treatments for neuropathic pain: Systematic review and French recommendations. Revue Neurologique. 2020;176(5):325–352. DOI: https://doi.org/10.1016/j.neurol.2020.01.361.
35. Kremer M, Salvat E, Muller A, Yalcin I, Barrot M. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience. 2016;338:183–206. DOI: https://doi.org/10.1016/j.neuroscience.2016.06.057.
36. American Geriatrics Society 2012 Beers Criteria Update Expert Panel. American Geriatrics Society updated Beers Criteria for potentially inappropriate medication use in older adults. Journal of the American Geriatrics Society. 2012;60(4):616–631. DOI: https://doi.org/10.1111/j.1532-5415.2012.03923.x.
37. Farag HM, Yunusa I, Goswami H, Sultan I, Doucette JA, Eguale T. Comparison of amitriptyline and us food and drug administration-approved treatments for fibromyalgia: A systematic review and network meta-analysis. JAMA Network Open. 2022;5(5):e2212939. DOI: https://doi.org/10.1001/jamanetworkopen.2022.12939.
38. Finnerup NB, Attal N, Haroutounian S, McNicol ED, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. The Lancet Neurology. 2015;14(2):162–173. DOI: https://doi.org/10.1016/S1474-4422-(14)70251-0.
39. Tesfaye S, Sloan G, Petrie J, White D, Bradburn M, Julious S, et al. Comparison of amitriptyline supplemented with pregabalin, pregabalin supplemented with amitriptyline, and duloxetine supplemented with pregabalin for the treatment of diabetic peripheral neuropathic pain (OPTION-DM): A multicentre, double-blind, randomised crossover trial. The Lancet. 2022;400(10353):680–690. DOI: https://doi.org/10.1016/S0140-6736(22)01472-6.
40. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–2157. DOI: https://doi.org/10.1053/j.gastro.2007.03.054.
41. Willard FS, Douros JD, Gabe MB, Showalter AD, Wainscott DB, Suter TM, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight. 2020;5(17): e140532. DOI: https://doi.org/10.1172/jci.insight.140532.
42. Urva S, Coskun T, Loh MT, Du Y, Thomas MK, Gurbuz S, et al. LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes: A phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. The Lancet. 2022;400(10366):1869–1881. DOI: https://doi.org/10.1016/S0140-6736(22)02033-5.
43. Uccellatore A, Genovese S, Dicembrini I, Mannucci E, Ceriello A. Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists. Diabetes Therapy. 2015;6(3):239–256. DOI: https://doi.org/10.1007/s13300-015-0127-x.
44. Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: A systematic review and mixed-treatment comparison analysis. Diabetes, Obesity & Metabolism. 2017;19 (4):524–536. DOI: https://doi.org/10.1111/dom.12849.
45. Lin DSH, Yu AL, Lo HY, Lien CW, Lee JK, Chen WJ. Major adverse cardiovascular and limb events in people with diabetes treated with GLP-1 receptor agonists vs SGLT2 inhibitors. Diabetologia. 2022;65(12):2032–2043. DOI: https://doi.org/10.1007/s00125-022-05772-9.
46. Du Y, Bai L, Fan B, Ding H, Ding H, Hou L, et al. Effect of SGLT2 inhibitors versus DPP4 inhibitors or GLP-1 agonists on diabetic foot-related extremity amputation in patients with t2dm: A meta-analysis. Primary Care Diabetes. 2022;16(1):156–161. DOI: https://doi.org/10.1016/j.pcd.2021.12.007.
47. Nukada H. Ischemia and diabetic neuropathy. Handbook of Clinical Neurology. 2014;126:469–487. DOI: https://doi.org/10.1016/B978-0-444-53480-4.00023-0.
48. Dinh Le T, Phi Thi Nguyen N, Thanh Thi Tran H, Luong Cong T, Ho Thi Nguyen L, Do Nhu B, et al. Diabetic peripheral neuropathy associated with cardiovascular risk factors and glucagon-like peptide-1 concentrations among newly diagnosed patients with type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity. 2022;15:35–44. DOI: https://doi.org/10.2147/DMSO.S344532.
49. Bakbak E, Terenzi DC, Trac JZ, Teoh H, Quan A, Glazer SA, et al. Lessons from Bariatric Surgery: Can increased GLP-1 enhance vascular repair during cardiometabolic-based chronic disease? Reviews in Endocrine & Metabolic Disorders. 2021;22(4):1171–1188. DOI: https://doi.org/10.1007/s11154-021-09669-7.
50. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. The New England Journal of Medicine. 2016;375(4):311–322. DOI: https://doi.org/10.1056/NEJMoa1603827.
51. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. The New England Journal of Medicine. 2016;375(19):1834–1844. DOI: https://doi.org/10.1056/NEJMoa1607141.
52. Shiraishi D, Fujiwara Y, Komohara Y, Mizuta H, Takeya M. Glucagon-like peptide-1 (GLP-1) induces m2 polarization of human macrophages via STAT3 activation. Biochemical and Biophysical Research Communications. 2012;425 (2):304–308. DOI: https://doi.org/10.1016/j.bbrc.2012.07.086.
53. Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (age)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing age receptor (rage) expression. Biochemical and Biophysical Research Communications. 2010;391(3): 1405–1408. DOI: https://doi.org/10.1016/j.bbrc.2009.12.075.
54. Liu WJ, Jin HY, Lee KA, Xie SH, Baek HS, Park TS. Neuroprotective effect of the glucagon-like peptide-1 receptor agonist, synthetic exendin-4, in streptozotocin-induced diabetic rats. British Journal of Pharmacology. 2011;164(5):1410–1420. DOI: https://doi.org/10.1111/j.1476-5381.2011.01272.x.
55. Ma J, Shi M, Zhang X, Liu X, Chen J, Zhang R, et al. GLP-1R agonists ameliorate peripheral nerve dysfunction and inflammation via p38 mapk/nf-κb signaling pathways in streptozotocin-induced diabetic rats. International Journal of Molecular Medicine. 2018;41(5):2977–2985. DOI: https://doi.org/10.3892/ijmm.2018.3509.
56. Jaiswal M, Martin CL, Brown MB, Callaghan B, Albers JW, Feldman EL, et al. Effects of exenatide on measures of diabetic neuropathy in subjects with type 2 diabetes: Results from an 18-month proof-of-concept open label randomized study. Journal of Diabetes and its Complications. 2015;29(8):1287–1294. DOI: https://doi.org/10.1016/j.jdiacomp.2015.07.013.
57. Ponirakis G, Abdul-Ghani MA, Jayyousi A, Almuhannadi H, Petropoulos IN, Khan A, et al. Effect of treatment with exenatide and pioglitazone or basal-bolus insulin on diabetic neuropathy: A substudy of the Qatar Study. BMJ Open Diabetes Research & Care. 2020;8(1):e001420. DOI: https://doi.org/10.1136/bmjdrc-2020-001420.
58. Issar T, Kwai NCG, Poynten AM, Arnold R, Milner KL, Krishnan AV. Effect of exenatide on peripheral nerve excitability in type 2 diabetes. Clinical Neurophysiology. 2021;132(10):2532–2539. DOI: https://doi.org/10.1016/j.clinph.2021.05.033.
59. Takakura S, Toyoshi T, Hayashizaki Y, Takasu T. Effect of ipragliflozin, an SGLT2 inhibitor, on progression of diabetic microvascular complications in spontaneously diabetic Torii fatty rats. Life Sciences. 2016;147: 125–131. DOI: https://doi.org/10.1016/j.lfs.2016.01.042.
60. Oelze M, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Mikhed Y, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE. 2014;9(11): e112394. DOI: https://doi.org/10.1371/journal.pone.0112394.
61. Lee KA, Jin HY, Lee NY, Kim YJ, Park TS. Effect of empagliflozin, a selective sodium-glucose cotransporter 2 inhibitor, on kidney and peripheral nerves in streptozotocin-induced diabetic rats. Diabetes & Metabolism. 2018;42(4):338–342. DOI: https://doi.org/10.4093/dmj.2017.0095.
62. Liao J, Kang A, Xia C, Young T, Di Tanna GL, Arnott C, et al. The impact of canagliflozin on the risk of neuropathy events: A post-hoc exploratory analysis of the CREDENCE trial. Diabetes & Metabolism. 2022; 48(4):101331. DOI: https://doi.org/10.1016/j.diabet.2022.101331.
63. Wang C, Pan H, Wang W, Xu A. Effect of dapagliflozin combined with mecobalamin on blood glucose concentration and serum MDA, SOD, and COX-2 in patients with type 2 diabetes mellitus complicated with peripheral neuropathy. Acta Medica Mediterranea. 2019;35(4):2211–2215.
64. Shuteeva TV. Modern approach in the treatment of pain syndrome in diabetic polyneuropathy. Difficult Patient. 2018;16(6):58–60. (In Russ.). EDN: https://elibrary.ru/xyqdql.
65. Azarova IE. NCF4 gene polymorphism, level of glutathione and glycated hemoglobin in type 2 diabetics with coronary artery disease. Medical Genetics. 2021;20(8):37–47. (In Russ.). DOI: https://doi.org/10.25557/2073-7998.2021.08.37-47.
66. Azarova YuE. The relationship of polymorphism rs12449964 of the phosphatidyl-ethanolamine-n-methyltransferase gene with the development of hypertriglyceridemia and obesity in patients with type 2 diabetes mellitus. Scientific Results of Biomedical Research. 2021;7 (3):245–256. (In Russ.). DOI: https://doi.org/10.18413/2658-6533-2021-7-3-0-4.
67. Ishibashi F, Kosaka A, Tavakoli M. Sodium glucose cotransporter-2 inhibitor protects against diabetic neuropathy and nephropathy in modestly controlled type 2 diabetes: Follow-up study. Frontiers in Endocrinology. 2022;13:864332. DOI: https://doi.org/10.3389/fendo.2022.864332.
Дополнительные файлы
Рецензия
Для цитирования:
Цепелев ВЮ, Масалева ИО, Болдина НВ, Полякова ОВ, Гунов СВ. Современные методы фармакологической коррекции диабетической полинейропатии. Уральский медицинский журнал. 2025;24(1):142–158. https://doi.org/10.52420/umj.24.1.142. EDN: QPAAAB
For citation:
Tsepelev VY, Masaleva IO, Boldina NV, Polyakova OV, Gunov SV. Modern Methods of Pharmacological Correction of Diabetic Polyneuropathy. Ural Medical Journal. 2025;24(1):142–158. (In Russ.) https://doi.org/10.52420/umj.24.1.142. EDN: QPAAAB