Preview

Ural Medical Journal

Advanced search

Mechanisms of Formation and Progression of Endothelial Dysfunction in Women with Preeclampsia: The Role of Hypertension and Postoperative Pain

https://doi.org/10.52420/umj.24.3.174

EDN: OYPVZD

Abstract

Introduction. An increase in the level of placental factors in pregnant women with preeclampsia is the cause of hypertension and endothelial dysfunction. These phenomena often progress in the early postoperative period of cesarean section. Severe complications and an increased risk of developing diseases of the cardiovascular system are possible.

The aim — to analyze the available literature on the study of the effect of postoperative pain on the progression of endothelial dysfunction and hypertension in women with preeclampsia after cesarean section.

Materials and methods. A search was conducted for publications from the PubMed/MEDLINE and eLibrary.ru databases over the past 5 years

Results and discussion. In pregnant women with preeclampsia and patients with postoperative pain syndrome, the mechanisms of vascular endothelial damage and the development of hypertension are the same: inflammation, oxidative stress, changes in the response of immune cells, activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system. The progression of endothelial dysfunction and hypertension in the early postoperative period of cesarean section in women with preeclampsia may depend on the pain syndrome.

Conclusion. Pain syndrome activates inflammation, oxidative stress and changes in the response of immune cells in the early postoperative period of cesarean section. This may be the cause of the progression of endothelial dysfunction and hypertension in women with preeclampsia. Regional analgesia can reduce these phenomena.

About the Authors

V. V. Davydov
Altai State Medical University
Russian Federation

Vladimir V. Davydov — Doctor of Sciences (Medicine), Associate Professor, Professor of the Department of Anesthesiology and Resuscitation with the Course of Additional Professional Education, Altai State Medical University.

Barnaul


Competing Interests:

None



V. P. Safonov
Altai State Medical University; Altai Regional Clinical Perinatal Center
Russian Federation

Vladimir P. Safonov — Postgraduate Student of the Department of Anesthesiology and Resuscitation with the Course of Additional Professional Education, Altai State Medical University; Head of the Department of Anesthesiology and Intensive Care, Altai Regional Clinical Perinatal Center.

Barnaul


Competing Interests:

None



References

1. Ajoolabady A, Pratico D, Ren J. Endothelial dysfunction: mechanisms and contribution to diseases. Acta Pharmacologica Sinica. 2024;45(10):2023–2031. DOI: https://doi.org/10.1038/s41401-024-01295-8.

2. Drożdż D, Drożdż M, Wójcik M. Endothelial dysfunction as a factor leading to arterial hypertension. Pediatric Nephrology. 2023;38(9):2973–2985. DOI: https://doi.org/10.1007/s00467-022-05802-z.

3. Naderi-Meshkin H, Setyaningsih WAW. Endothelial cell dysfunction: Onset, progression, and consequences. Frontiers in Bioscience-Landmark. 2024;29(6):223. DOI: https://doi.org/10.31083/j.fbl2906223.

4. Chang KJ, Seow KM, Chen KH. Preeclampsia: Recent advances in predicting, preventing, and managing the maternal and fetal life-threatening condition. International Journal of Environmental Research and Public Health. 2023;20(4):2994. DOI: https://doi.org/10.3390/ijerph20042994.

5. Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: Linking placental ischemia with maternal endothelial and vascular dysfunction. Comprehensive Physiology. 2020; 11(1):1315–1349. DOI: https://doi.org/10.1002/cphy.c200008.

6. Ackerman-Banks CM, Lipkind HS, Palmsten K, Ahrens KA. Association between hypertensive disorders of pregnancy and cardiovascular diseases within 24 months after delivery. American Journal of Obstetrics & Gynecology. 2023;229(1):65.e1–65.e15. DOI: https://doi.org/10.1016/j.ajog.2023.04.006.

7. Shifman EM, Pylaeva NY, Gulyaev VV, Kulikov AV, Pylaev AV, Kazinina EN, et al. Possibilities of predicting the manifestation of HELLP syndrome. Ural Medical Journal. 2024;23(3):179–197. (In Russ.). DOI: https://doi.org/10.52420/umj.23.3.179.

8. Ivascu R, Torsin LI, Hostiuc L, Nitipir C, Corneci D, Dutu M. The surgical stress response and anesthesia: A narrative review. Journal of Clinical Medicine.2024;13(10):3017.DOI:https://doi.org/10.3390/jcm13103017.

9. De Bhailis ÁM, Kalra PA. Hypertension and the kidneys. British Journal of Hospital Medicine. 2022;83(5): 1–11. DOI: https://doi.org/10.12968/hmed.2021.0440.

10. Alzaydi MM, Abdul-Salam VB, Whitwell HJ, Russomanno G, Glynos A, Capece D, et al. Intracellular chloride channels regulate endothelial metabolic reprogramming in pulmonary arterial hypertension. American Journal of Respiratory Cell and Molecular Biology. 2023;68(1):103–115. DOI: https://doi.org/10.1165/rcmb.2022-0111OC.

11. Genovesi S, Giussani M, Orlando A, Lieti G, Viazzi F, Parati G. Relationship between endothelin and nitric oxide pathways in the onset and maintenance of hypertension in children and adolescents. Pediatric Nephrology. 2022;37:537–545. DOI: https://doi.org/10.1007/s00467-021-05144-2.

12. Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial cell dysfunction and increased cardiovascular risk in patients with chronic kidney disease. Journal of the American Heart Association. 2023;132(8):970–992. DOI: https://doi.org/10.1161/CIRCRESAHA.123.321752.

13. Zhang Y, Li JJ, Xu R, Wang XP, Zhao XY, Fang Y, et al. Nogo-B mediates endothelial oxidative stress and inflammation to promote coronary atherosclerosis in pressure-overloaded mouse hearts. Redox Biology. 2023;68:102944. DOI: https://doi.org/10.1016/j.redox.2023.102944.

14. Trogisch FA, Abouissa A, Keles M, Birke A, Fuhrmann M, Dittrich GM, et al. Endothelial cells drive organ fibrosis in mice by inducing expression of the transcription factor SOX9. Science Translational Medicine. 2024;16(736):eabq4581. DOI: https://doi.org/10.1126/scitranslmed.abq4581.

15. Dikalova A, Fehrenbach D, Mayorov V, Panov A, Ao M, Lantier L, et al. Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension. Circulation Research. 2024;134(11):1451–1464. DOI: https://doi.org/10.1161/CIRCRESAHA.123.323596.

16. Gan L, Ye D, Feng Y, Pan H, Lu X, Wan J, et al. Immune cells and hypertension. Immunologic Research. 2024;72(1):1–13. DOI: https://doi.org/10.1007/s12026-023-09414-z.

17. Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nature Reviews Cardiology. 2024;21(6):396–416. DOI: https://doi.org/10.1038/s41569-023-00964-1.

18. Hengel FE, Benitah JP, Wenzel UO. Mosaic theory revised: inflammation and salt play central roles in arterial hypertension. Cellular & Molecular Immunology. 2022;19(5):561–576. DOI: https://doi.org/10.1038/s41423-022-00851-8.

19. Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Frontiers in Immunology. 2023;13:1098725. DOI: https://doi.org/10.3389/fimmu.2022.1098725.

20. Xu YD, Cheng M, Shang PP, Yang YQ. Role of IL-6 in dendritic cell functions. Journal of Leukocyte Biology. 2022;111(3):695–709. DOI: https://doi.org/10.1002/JLB.3MR0621-616RR.

21. Franco C, Sciatti E, Favero G, Bonomini F, Vizzardi E, Rezzani R. Essential hypertension and oxidative stress: Novel future perspectives. International Journal of Molecular Sciences. 2022;23(22):14489. DOI: https://doi.org/10.3390/ijms232214489.

22. Wu Y, Ding Y, Ramprasath T, Zou MH. Oxidative stress, GTPCH1, and endothelial nitric oxide synthase uncoupling in hypertension. Antioxidants & Redox Signaling. 2021;34(9):750–764. DOI: https://doi.org/10.1089/ars.2020.8112.

23. Bruckert C, Matsushita K, Mroueh A, Amissi S, Auger C, Houngue U, et al. Empagliflozin prevents angiotensin II-induced hypertension related micro and macrovascular endothelial cell activation and diastolic dysfunction in rats despite persistent hypertension: Role of endothelial SGLT1 and 2. Vascular Pharmacology. 2022;146:107095. DOI: https://doi.org/10.1016/j.vph.2022.107095.

24. Pinheiro LC, Oliveira-Paula GH. Sources and effects of oxidative stress in hypertension. Current Hypertension Reports. 2020;16(3):166–180. DOI: https://doi.org/10.2174/1573402115666190531071924.

25. Alexander Y, Osto E, Schmidt-Trucksäss A, Shechter M, Trifunovic D, Duncker DJ, et al. Endothelial function in cardiovascular medicine: A consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovascular Research. 2021;117(1):29–42. DOI: https://doi.org/10.1093/cvr/cvaa085.

26. Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules. 2020;10(6):953. DOI: https://doi.org/10.3390/biom10060953.

27. Dimitriadis E, Rolnik DL, Zhou W, Estrada-Gutierrez G, Koga K, Francisco RPV, et al. Pre-eclampsia. Nature Reviews Disease Primers. 2023;9(1):8. DOI: https://doi.org/10.1038/s41572-023-00417-6.

28. Pereira MM, Torrado J, Sosa C, Zócalo Y, Bia D. Shedding light on the pathophysiology of preeclampsia-syndrome in the era of cardio-obstetrics: Role of inflammation and endothelial dysfunction. Current Hypertension Reviews. 2022;18(1):17–33. DOI: https://doi.org/10.2174/1573402117666210218105951.

29. Nunes PR, Pinheiro LC, Martins LZ, Dias-Junior CA, Palei ACT, Sandrim VC. A new look at the role of nitric oxide in preeclampsia: Protein S-nitrosylation. Hypertension in Pregnancy. 2022;29:14–20. DOI: https://doi.org/10.1016/j.preghy.2022.05.008.

30. Stepan H, Galindo A, Hund M, Schlembach D, Sillman J, Surbek D, et al. Clinical utility of sFlt-1 and PlGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound in Obstetrics and Gynecology. 2023;61(2):168–180. DOI: https://doi.org/10.1002/uog.26032.

31. Westerberg AC, Degnes ML, Andresen IJ, Roland MCP, Michelsen TM. Angiogenic and vasoactive proteins in the maternal-fetal interface in healthy pregnancies and preeclampsia. American Journal of Obstetrics and Gynecology. 2024;231(5):550.e1–550.e22. DOI: https://doi.org/10.1016/j.ajog.2024.03.012.

32. Zenko LI, Sidorenko VN, Klyga OI. The functional role of vascular endotheium in the realization of gestational endothelium in the realization of gestational hypertension and preeclampsia. Journal of Military Medicine. 2022;(4):31–37. (In Russ.). EDN: https://elibrary.ru/WUPGXO.

33. Mikhailova YuV, Shekhter MS. Expression of endothelial disfunction as objective criterion of severity of preeclampsia. Medico-Pharmaceutical Journal “Pulse”. 2023;25(3):84–89. (In Russ.). DOI: https://doi.org/10.26787/nydha-2686-6838-2023-25-3-84-89.

34. Baev TO, Panova IA, Kuzmenko GN, Klycheva MM, Nazarov SB. The state of microcirculation in pregnant women with hypertensive disorders in the third trimester of pregnancy. Research Results in Biomedecine. 2023;9(1):113–128. DOI: https://doi.org/10.18413/2658-6533-2023-9-1-0-8.

35. Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, et al. The role of immune cells and mediators in preeclampsia. Nature Reviews Nephrology. 2023;19(4):257–270. (In Russ.). DOI: https://doi.org/10.1038/s41581-022-00670-0.

36. Lucca LE, Dominguez-Villar M. Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nature Reviews Immunology. 2020;20(11):680–693. DOI: https://doi.org/10.1038/s41577-020-0296-3.

37. Deer E, Reeve KE, Amaral L, Vaka VR, Franks M, Campbell N, et al. CD4+ T cells cause renal and placental mitochondrial oxidative stress as mechanisms of hypertension in response to placental ischemia. American Journal of Physiology. 2021;320(1):F47–F54. DOI: https://doi.org/10.1152/ajprenal.00398.2020.

38. Travis OK, Baik C, Tardo GA, Amaral L, Jackson C, Greer M, et al. Adoptive transfer of placental ischemia-stimulated natural killer cells causes a preeclampsia-like phenotype in pregnant rats. American Journal of Reproductive Immunology. 2021;85(6):e13386. DOI: https://doi.org/10.1111/aji.13386.

39. Dockree S, Shine B, Pavord S, Impey L, Vatish M. White blood cells in pregnancy: Reference intervals for before and after delivery. eBioMedicine. 2021;74:103715. DOI: https://doi.org/10.1016/j.ebiom.2021.103715.

40. Bert S, Ward EJ, Nadkarni S. Neutrophils in pregnancy: New insights into innate and adaptive immune regulation. Journal of Immunology. 2021;164(4):665–676. DOI: https://doi.org/10.1111/imm.13392.

41. He YD, Xu BN, Wang ML, Wang YQ, Yu F, Chen Q, et al. Dysregulation of complement system during pregnancy in patients with preeclampsia: A prospective study. Molecular Immunology. 2020;122:69–79. DOI: https://doi.org/10.1016/j.molimm.2020.03.021.

42. Erez O, Romero R, Jung E, Chaemsaithong P, Bosco M, Suksai M, et al. Preeclampsia and eclampsia: The conceptual evolution of a syndrome. American Journal of Obstetrics and Gynecology. 2022;226(2S):S786– S803. DOI: https://doi.org/10.1016/j.ajog.2021.12.001.

43. Freire VAF, Melo AD, Santos HL, Barros-Pinheiro M. Evaluation of oxidative stress markers in subtypes of preeclampsia: A systematic review and meta-analysis. Placenta. 2023;132:55–67. DOI: https://doi.org/10.1016/j.placenta.2022.12.009.

44. Afrose D, Chen H, Ranashinghe A, Liu CC, Henessy A, Hansbro PM, et al. The diagnostic potential of oxidative stress biomarkers for preeclampsia: Systematic review and meta-analysis. Biology of Sex Differences. 2022;13(1):26. DOI: https://doi.org/10.1186/s13293-022-00436–0.

45. Deer E, Vaka VR, McMaster KM, Wallace K, Cornelius DC, Amaral LM, et al. Vascular endothelial mitochondrial oxidative stress in response to preeclampsia: A role for angiotension II type 1 autoantibodies. American Journal of Obstetrics and Gynecology. 2021;3(1):100275. DOI: https://doi.org/10.1016/j.ajogmf.2020.100275.

46. Gil-Acevedo LA, Ceballos G, Torres-Ramos YD. Foetal lipoprotein oxidation and preeclampsia. Lipids in Health and Disease. 2022;21(1):51. DOI: https://doi.org/10.1186/s12944-022-01663–5.

47. Sakowicz A, Bralewska M, Rybak-Krzyszkowska M, Grzesiak M, Pietrucha T. New ideas for the prevention and treatment of preeclampsia and their molecular inspirations. International Journal of Molecular Sciences. 2023;24(15):12100. DOI: https://doi.org/10.3390/ijms241512100.

48. Jiménez-Osorio AS, Carreón-Torres E, Correa-Solís E, Ángel-García J, Arias-Rico J, Jiménez-Garza O, et al. Inflammation and oxidative stress induced by obesity, gestational diabetes, and preeclampsia in pregnancy: Role of high-density lipoproteins as vectors for bioactive compounds. Antioxidants. 2023;12(10):1894. DOI: https://doi.org/10.3390/antiox12101894.

49. Hirose M, Okutani H, Hashimoto K, Ueki R, Shimode N, Kariya N, et al. Intraoperative assessment of surgical stress response using nociception monitor under general anesthesia and postoperative complications: A narrative review. Journal of Clinical Medicine. 2022;11(20):6080. DOI: https://doi.org/10.3390/jcm11206080.

50. Popov MO, Kinzhalova SV, Davydova NS, Sidenkova AP. Mechanisms of development of postoperative pain syndrome in gynecological patients. Ural Medical Journal. 2023;22(6):94–103. (In Russ.). DOI: https://doi.org/10.52420/2071-5943-2023-22-6-94-103.

51. Conic RRZ, Vasilopoulos T, Devulapally K, Przkora R, Dubin A, Sibille KT, et al. Hypertension and urologic chronic pelvic pain syndrome: An analysis of MAPP-I data. BMC Urology. 2024;24(1):21. DOI: https://doi.org/10.1186/s12894-024-01407-w.

52. Tavakkoli M, Aali S, Khaledifar B, Ferns GA, Khazaei M, Fekri K, et al. The potential association between the risk of post-surgical adhesion and the activated local angiotensin II type 1 receptors: Need for novel treatment strategies. Gastrointestinal Tumors. 2021;8(3):107–114. DOI: https://doi.org/10.1159/000514614.

53. Cocea AC, Stoica CI. Interactions and trends of interleukins, PAI-1, CRP, and TNF-α in inflammatory responses during the perioperative period of joint arthroplasty: Implications for pain management — a narrative review. Journal of Personalized Medicine. 2024;14(5):537. DOI: https://doi.org/10.3390/jpm14050537.

54. Fuller AM, Bharde S, Sikandar S. The mechanisms and management of persistent postsurgical pain. Frontiers in Pain Research. 2023;4:1154597. DOI: https://doi.org/10.3389/fpain.2023.1154597.

55. Van den Berg C, De Bree PN, Huygen F, Tiemensma J. Glucocorticoid treatment in patients with complex regional pain syndrome: A systematic review. European Journal of Pain. 2022;26(10):2009–2035. DOI: https://doi.org/10.1002/ejp.2025.

56. De Oliveira Galassi T, Fernandes PF, Salgado ASI, Cidral-Filho FJ, Piovezan AP, Lüdtke DD, et al. Preventive supplementation of omega-3 reduces pain and pro-inflammatory cytokines in a mouse model of complex regional pain syndrome type I. Frontiers in Integrative Neuroscience. 2022;16:840249. DOI: https://doi.org/10.3389/fnint.2022.840249.

57. Canakci E, Cihan M, Altinbas A, Cebeci Z, Gultekin A, Tas N. Efficacy of ultrasound-guided Transversus Abdominis Plane (TAP) block in inguinal hernia surgery and the immunomodulatory effects of proinflammatory cytokines: Prospective, randomized, placebo-controlled study. Brazilian Journal of Anesthesiology. 2021;71(5):538–544. DOI: https://doi.org/10.1016/j.bjane.2021.02.005.

58. Turan D, Ozden MGN, Kocoglu H. Effects of ultrasound-guided erector spinae plane block in radical prostatectomy surgery on pain and surgical stress response. Ain-Shams Journal of Anesthesiology. 2023;15(1):52. DOI: https://doi.org/10.1186/s42077-023-00346-2.

59. Ino Y, Maruyama M, Shimizu M, Morita R, Sakamoto A, Suzuki H, et al. TSLP in DRG neurons causes the development of neuropathic pain through T cells. Journal of Neuroinflammation. 2023;20(1):200. DOI: https://doi.org/10.1186/s12974-023-02882-y.

60. Liu JA, Yu J, Cheung CW. Immune actions on the peripheral nervous system in pain. International Journal of Molecular Sciences. 2021;22(3):1448. DOI: https://doi.org/10.3390/ijms22031448.

61. Wen B, Pan Y, Cheng J, Xu L, Xu J. The role of neuroinflammation in complex regional pain syndrome: A comprehensive review. Journal of Pain Research. 2023;16:3061–3073. DOI: https://doi.org/10.2147/JPR.S423733.

62. Prasad A, Chakravarthy K. Review of complex regional pain syndrome and the role of the neuroimmune axis. Molecular Pain. 2021;17:17448069211006617. DOI: https://doi.org/10.1177/17448069211006617.

63. Ritiu SA, Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, et al. The impact of general anesthesia on redox stability and epigenetic inflammation pathways: Crosstalk on perioperative antioxidant therapy. Cells. 2022;11(12):1880. DOI: https://doi.org/10.3390/cells11121880.

64. Vujovic KS, Zivkovic A, Dozic I, Cirkovic A, Medic B, Srebro D, et al. Oxidative stress and inflammation biomarkers in postoperative pain modulation in surgically treated patients with laryngeal cancer-pilot study. Cells. 2023;12(10):1391. DOI: https://doi.org/10.3390/cells12101391.

65. Peršec J, Šribar A, Ilić M, Mamić I, Kifer D, Domijan AM, et al. Effects of epidurally administered dexmedetomidine and dexamethasone on postoperative pain, analgesic requirements, inflammation, and oxidative stress in thoracic surgery. Acta Pharmaceutica. 2023;73(4):691–708. DOI: https://doi.org/10.2478/acph-2023-0040.

66. Bruehl S, Milne G, Schildcrout J, Shi Y, Anderson S, Shinar A, et al. Perioperative oxidative stress predicts subsequent pain-related outcomes in the 6 months after total knee arthroplasty. Pain. 2023;164(1):111–118. DOI: https://doi.org/10.1097/j.pain.0000000000002670.

67. Gültiken N, Gürler H, Yarım GF, Binli F, Tuncay M, Büyükbudak F, et al. Antioxidant and analgesic potential of butorphanol in dogs undergoing ovariohysterectomy. Theriogenology. 2022;190:1–7. DOI: https://doi.org/10.1016/j.theriogenology.2022.07.002.

68. Schimites PI, Martins LR, Teixeira LG, Tomio J, Segat H, Baccin P, et al. Influence of the dose and frequency of administration of tramadol on analgesia, hematological, biochemical parameters, and oxidative status of cats undergoing ovariohysterectomy. Topics in Companion Animal Medicine. 2023;55:100801. DOI: https://doi.org/10.1016/j.tcam.2023.100801.

69. Pansari A, Faisal M, Jamei M, Abduljalil K. Prediction of basic drug exposure in milk using a lactation model algorithm integrated within a physiologically based pharmacokinetic model. Biopharmaceutics and Drug Disposition. 2022;43(5):201–212. DOI: https://doi.org/10.1002/bdd.2334.

70. Lewald H, Girard T. Analgesia after cesarean section — what is new? Current Opinion in Anesthesiology. 2023;36(3):288–292. DOI: https://doi.org/10.1097/ACO.0000000000001259.

71. Gesseck AM, Peace MR, Nanco CR, Wolf CE, Hendricks-Muñoz KD, Xu J, et al. Neonatal exposure to tramadol through mother’s breast milk. Journal of Analytical Toxicology. 2021;45(8):840–846. DOI: https://doi.org/10.1093/jat/bkab055.

72. Jansson LM, McConnell K, Velez M, Spencer N, Gomonit M, Swortwood MJ. Buprenorphine-naloxone maintenance and lactation. Journal of Human Lactation. 2024;40(1):113–119. DOI: https://doi.org/10.1177/08903344231209304.

73. Kanervo MM, Tupola SJ, Nikkola EM, Rantakari KM, Kahila HK. Buprenorphine-naloxone, buprenorphine, and methadone throughout pregnancy in maternal opioid use disorder. Acta Obstetricia et Gynecologica Scandinavica. 2023;102(3):313–322. DOI: https://doi.org/10.1111/aogs.14497.

74. Siegel CH, Sammaritano LR. Safety of medications used to treat autoimmune rheumatic diseases during pregnancy and lactation. Journal of Clinical Rheumatology. 2024;30(7S Suppl 1):S25–S33. DOI: https://doi.org/10.1097/RHU.0000000000002123.


Review

For citations:


Davydov VV, Safonov VP. Mechanisms of Formation and Progression of Endothelial Dysfunction in Women with Preeclampsia: The Role of Hypertension and Postoperative Pain. Ural Medical Journal. 2025;24(3):174–190. (In Russ.) https://doi.org/10.52420/umj.24.3.174. EDN: OYPVZD

Views: 36


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)