Preview

Ural Medical Journal

Advanced search

Analysis of the Localization of Connexin 36 in the Endocrine Part of Pancreatic Tissue in Modeling Various Subtypes of Gestational Diabetes Mellitus in Rats

https://doi.org/10.52420/umj.24.4.7

EDN: AVWQFN

Abstract

Introduction. Gestational diabetes mellitus (GDM) is heterogeneous disease that includes several subtypes: subtype with predominant insulin resistance (IR) and subtype with predominant dysfunction of β-cell of pancreas. It was revealed that pancreatic cells express a gap junction protein, connexin 36, and gap junctions containing this protein normally coordinate the pulsating dynamics of Ca 2+ and the release of insulin, and disruption of this process may be one of the pathogenetic mechanisms of GDM.

The aim of work was to study distribution of connexin 36 in pancreatic tissue when modeling various subtypes of GDM in rats.

Materials and methods. Prospective study was conducted on white nonlinear rats: 50 females and 15 males. Female rats were divided into 3 groups: I — 15 pregnant rats (control); II — 12 pregnant rats (pancreatic β-cell dysfunction); III — 12 pregnant rats (IR). All rats underwent histomorphological examination on paraffin sections using primary rabbit polyclonal antibodies to connexin 36 (Invitrogen, USA).

Results. In study of pancreatic samples of group III, a sharp decrease in level of connexin 36 expression was noted. In samples of group II, it was revealed that in endocrine regions of gland, membrane reaction between cells is negative. Morphometric examination revealed a significant decrease in both the specific density of immune complexes and their average area in groups III and II (p < 0.050).

Discussion. An immunohistochemical study of the distribution of connexin 36 indicates a decrease in electrotonic connectivity through gap contacts both in model of GDM subtype with predominant IR and pancreatic beta-cell dysfunction.

Conclusion. Results obtained suggest that reduction of connexin 36 may accompany development of pathogenetic mechanisms of GDM.

About the Authors

N. I. Volkova
Rostov State Medical University
Russian Federation

Natalya I. Volkova — Doctor of Sciences (Medicine), Professor, Head of the Department of Internal Medicine No. 3, Rostov State Medical University.

Rostov-on-Don


Competing Interests:

None



I. Yu. Davidenko
Rostov State Medical University
Russian Federation

Ilya Yu. Davidenko — Candidate of Sciences (Medicine), Associate Professor, Associate Professor of the Department of Internal Medicine No. 3, Rostov State Medical University.

Rostov-on-Don


Competing Interests:

None



S. N. Golovin
Don State Technical University
Russian Federation

Sergey N. Golovin — Senior Lecturer of the Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University.

Rostov-on-Don


Competing Interests:

None



S. K. Shebeko
Don State Technical University
Russian Federation

Sergey K. Shebeko — Doctor of Sciences (Pharmaceutics), Professor, Head of the Department of Biotechnical and Medical Systems and Technologies, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University.

Rostov-on-Don


Competing Interests:

None



E. Yu. Kirichenko
Don State Technical University
Russian Federation

Evgenia Yu. Kirichenko — Doctor of Sciences (Medicine), Professor, Professor of the Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University.

Rostov-on-Don


Competing Interests:

None



References

1. Volkova NI, Davidenko IY, Degtiareva YS, Sorokina YA, Avrutskaya VV. Clinical characteristics of patients with different subtypes of gestational diabetes mellitus: Research results. Diabetes Mellitus. 2024;27(4):336–346. (In Russ.). DOI: https://doi.org/10.14341/DM13105.

2. Volkova NI, Davidenko IYu, Degtyareva YuS. Gestational diabetes mellitus. Obstetrics and Gynecology. 2021;(9):174–179. (In Russ.). DOI: https://doi.org/10.18565/aig.2021.9.174-179.

3. Benhalima K, Van Crombrugge P, Moyson C, Verhaeghe J, Vandeginste S, Verlaenen H, et al. Characteristics and pregnancy outcomes across gestational diabetes mellitus subtypes based on insulin resistance. Diabetologia. 2019;62:2118–2128. DOI: https://doi.org/10.1007/s00125-019-4961-7.

4. Powe CE, Allard C, Battista MC, Doyon M, Bouchard L, Ecker JL, et al. Heterogeneous contribution of insulin sensitivity and secretion defects to gestational diabetes mellitus. Diabetes Care. 2016;39(6):1052–1055. DOI: https://doi.org/10.2337/dc15-2672.

5. Liu Y, Hou W, Meng X, Zhao W, Pan J, Tang J, et al. Heterogeneity of insulin resistance and beta cell dysfunction in gestational diabetes mellitus: A prospective cohort study of perinatal outcomes. Journal of Translational Medicine. 2018;16(1):289. DOI: https://doi.org/10.1186/s12967-018-1666-5.

6. Feghali M, Atlass J, Ribar E, Caritis S, Simhan H, Scifres C. Subtypes of gestational diabetes mellitus based on mechanisms of hyperglycemia. American Journal of Obstetrics and Gynecology. 2019;220(1 Suppl):S66. DOI: https://doi.org/10.1016/j.ajog.2018.11.091.

7. Layton J, Powe C, Allard C, Battista M, Doyon M, Bouchard L, et al. Maternal lipid profile differs by gestational diabetes physiologic subtype. Metabolism. 2019;91:39–42. DOI: https://doi.org/10.1016/j.metabol.2018.11.008.

8. Selen DJ, Edelson PK, James K, Corelli K, Hivert MF, Meigs JB, et al. Physiological subtypes of gestational glucose intolerance and risk of adverse pregnancy outcomes. American Journal of Obstetrics & Gynecology. 2022;226(2):241.e1–241.e14. DOI: https://doi.org/10.1016/j.ajog.2021.08.016.

9. Retnakaran R, Ye C, Hanley AJ, Connelly PW, Sermer M, Zinman B. Subtypes of gestational diabetes and future risk of pre-diabetes or diabetes. eClinicalMedicine. 2021;40:101087. DOI: https://doi.org/10.1016/j.eclinm.2021.101087.

10. Wen L, Chen Y, Liu T, Wang Y, Baker PN, Qi H, et al. Different subtypes of gestational diabetes mellitus are associated with distinct perinatal outcomes in twin pregnancies. Diabetes Research and Clinical Practice. 2023;204:110920. DOI: https://doi.org/10.1016/j.diabres.2023.110920.

11. Volkova NI, Davidenko IY, Degtiareva YS. Treatment options for various subtypes of gestational diabetes mellitus. Pharmateca. 2024;(2):105–110. (In Russ.). DOI: https://doi.org/10.18565/pharmateca.2024.2.105-110.

12. González-Nieto D, Gómez-Hernández JM, Larrosa B, Gutiérrez C, Muñoz MD, Fasciani I, et al. Regulation of neuronal connexin-36 channels by pH. PNAS. 2008;105(44):17169–17174. DOI: https://doi.org/10.1073/pnas.0804189105.

13. Saez JC, Berthoud VM, Branes, MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: Their regulation and functions. Physiological Reviews. 2003;83(4):1359–1400. DOI: https://doi.org/10.1152/physrev.00007.2003.

14. Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovascular Research. 2004; 62(2):228–232. DOI: https://doi.org/10.1016/j.cardiores.2003.11.013.

15. Michon L, Nlend Nlend R, Bavamian S, Bischoff L, Boucard N, Caille D, et al. Involvement of gap junctional communication in secretion. Biochimica et Biophysica Acta. 2005:1719(1–2):82–101. DOI: https://doi.org/10.1016/j.bbamem.2005.11.003.

16. Serre-Beinier V, Le Gurun S, Belluardo N, Trovato-Salinaro A, Charollais A, Haefliger JA, et al. Cx36 preferentially connects beta-cells within pancreatic islets. Diabetes. 2000;49(5):727–734. DOI: https://doi.org/10.2337/diabetes.49.5.727.

17. Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, et al. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Human Molecular Genetics. 2009;18(3):428–439. DOI: https://doi.org/10.1093/hmg/ddn370.

18. Bayrasheva VK, Babenko AYu, Dmitriev YuV, Bairamov AA, Chefu SG, Shatalov IS, et al. A novel model of type 2 diabetes and diabetic nephropathy in rats. Translational Medicine. 2016;3(4):44–55. EDN: https://www.elibrary.ru/YMJGTJ.

19. Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomedicine & Pharmacotherapy. 2017;95:605–613. DOI: https://doi.org/10.1016/j.biopha.2017.08.098.

20. Cruz PL, Moraes-Silva IC, Ribeiro AA, Machi JF, de Melo MDT, dos Santos F, et al. Nicotinamide attenuates streptozotocin-induced diabetes complications and increases survival rate in rats: Role of autonomic nervous system. BMC Endocrine Disorders. 2021;21(1):133. DOI: https://doi.org/10.1186/s12902-021-00795-6.

21. Kumar GL, Rudbeck L (eds.). Education guide — immunohistochemical staining methods. 5th ed. Carpenteria: Dako North America; 2009. VIII, 172 p.

22. Renne SL. How to measure your microscope’s HPF. A critical guide for residents. Pathologica. 2023; 115(6):302–307. DOI: https://doi.org/10.32074/1591-951X-900.

23. Hiżewska L, Osiak-Wicha C, Tomaszewska E, Muszyński S, Dobrowolski P, Andres K, et al. Morphometric analysis of developmental alterations in the small intestine of goose. Animals. 2023;13(20):3292. DOI: https://doi.org/10.3390/ani13203292.

24. Pagano M, Gauvreau K. Principles of biostatistics. 2nd ed. New York: Chapman and Hall/CRC; 2018. 584 p. DOI: https://doi.org/10.1201/9780429489624.

25. Pérez-Armendariz EM. Connexin 36, a key element in pancreatic beta cell function. Neuropharmacology. 2013;75:557–566. DOI: https://doi.org/10.1016/j.neuropharm.2013.08.015.

26. Ravier MA, Güldenagel M, Charollais A, Gjinovci A, Caille D, Söhl G, et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca 2+ and insulin oscillations, and basal insulin release. Diabetes. 2005;54(6):1798–1807. DOI: https://doi.org/10.2337/diabetes.54.6.1798.

27. Wellershaus K, Degen J, Deuchars J, Theis M, Charollais A, Caille D, et al. A new conditional mouse mutant reveals specific expression and functions of connexin36 in neurons and pancreatic beta-cells. Experimental Cell Research. 2008;314(5):997–1012. DOI: https://doi.org/10.1016/j.yexcr.2007.12.024.

28. Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M. Cx36-mediated coupling reduces beta-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes. 2007;56(4):1078–1086. DOI: https://doi.org/10.2337/db06-0232.

29. St Clair JR, Westacott MJ, Miranda J, Farnsworth NL, Kravets V, Schleicher WE, et al. Restoring connexin-36 function in diabetogenic environments precludes mouse and human islet dysfunction. The Journal of Physiology. 2023;601(18):4053–4072. DOI: https://doi.org/10.1113/JP282114.

30. Tetenborg S, Wang HY, Nemitz L, Depping A, Espejo AB, Aseervatham J, et al. Phosphorylation of Connexin36 near the C-terminus switches binding affinities for PDZ-domain and 14–3–3 proteins in vitro. Scientific Reports. 2020;10(1):18378. DOI: https://doi.org/10.1038/s41598-020-75375-0.

31. Peng H, Zhang K, Miao J, Yang Y, Xu S, Wu T, et al. SnRNA-Seq of pancreas revealed the dysfunction of endocrine and exocrine cells in transgenic pigs with prediabetes. International Journal of Molecular Sciences. 2023;24(9):7701. DOI: https://doi.org/10.3390/ijms24097701.


Supplementary files

Review

For citations:


Volkova NI, Davidenko IY, Golovin SN, Shebeko SK, Kirichenko EY. Analysis of the Localization of Connexin 36 in the Endocrine Part of Pancreatic Tissue in Modeling Various Subtypes of Gestational Diabetes Mellitus in Rats. Ural Medical Journal. 2025;24(4):7–18. (In Russ.) https://doi.org/10.52420/umj.24.4.7. EDN: AVWQFN

Views: 46


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)