Preview

Ural Medical Journal

Advanced search

Pathomorphological Changes in the Gracilis Muscle in Patients with Spastic Forms of Cerebral Palsy

https://doi.org/10.52420/umj.24.4.19

EDN: CSHCTE

Abstract

Introduction. The cause of muscle contractures in patients with cerebral palsy is not fully understood.

The aim of the study was to study the pathomorphological changes in the gracilis muscle (musculus gracilis) to determine the most effective strategy for treating contractures depending on the level of movement disorders in patients with cerebral palsy.

Materials and methods. Patients (n = 24) were divided into three groups according to the Gross Motor Function Classification System (GMFCS) scale. Histological examination of m. gracilis was performed, morphometric parameters were assessed.

Results. Myopathy of varying severity was detected in patients. In GMFCS II–III, an inverse statistical relationship was found between the percentage of muscle tissue in micropreparations and the Quetelet body mass index. In children of GMFCS IV and V, a negative correlation was recorded between the proportions of contractile and connective tissue in histological sections.

Discussion. Changes in m. gracilis are due to spastic syndrome. Interventions on the tendon-muscle apparatus do not affect the functional abilities of children with cerebral palsy.

Conclusions. The pathomorphological picture of the sections of m. gracilis corresponds to myopathy, the severity of which depends on the severity of motor limitations of children with cerebral palsy. Shortening of sarcomeres in myofibrils of m. gracilis is one of the reasons for the formation of adduction contractures of the hip joints in patients with cerebral palsy. Therapeutic and surgical interventions on the tendon-muscle system do not increase the muscle strength of children with cerebral palsy and do not affect their functional abilities.

About the Authors

V. V. Evreinov
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Russian Federation

Vadim V. Evreinov — Candidate of Sciences (Medicine), Anesthesiologist-Resuscitator of the Department of Anesthesiology and Resuscitation, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics.

Kurgan


Competing Interests:

None



G. N. Filimonova
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Russian Federation

Galina N. Filimonova — Candidate of Sciences (Biology), Senior Researcher of the Morphology Laboratory, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics.

Kurgan


Competing Interests:

None



I. N. Mezentsev
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Russian Federation

Igor N. Mezentsev — Pathologist, Junior Researcher of the Morphology Laboratory, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics.

Kurgan


Competing Interests:

None



Y. V. Zueva
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Russian Federation

Yana V. Zueva — Head of the Department of Physical and Rehabilitation Medicine, Traumatologist-Orthopedist, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics.

Kurgan


Competing Interests:

None



References

1. Pascal A, Govaert P, Oostra A, Naulaers G, Ortibus E, Van den Broeck C. Neurodevelopmental out-come in very preterm and very-low-birthweight infants born over the past decade: A meta-analytic review. Developmental Medicine & Child Neurology. 2018;60(4):342–355. DOI: https://doi.org/10.1111/dmcn.13675.

2. Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral palsy: Current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatric Disease and Treatment. 2020;16:1505–1518. DOI: https://doi.org/10.2147/NDT.S235165.

3. Paul S, Nahar A, Bhagawati M, Kunwar AJ. A review on recent advances of cerebral palsy. Oxidative Medicine and Cellular Longevity. 2022;2622310. DOI: https://doi.org/10.1155/2022/2622310.

4. Takano T, Hayashi A, Harada Y. Progression of motor disability in cerebral palsy: The role of concomitant epilepsy. Seizure: European Journal of Epilepsy. 2020;80:81–85. DOI: https://doi.org/10.1016/j.seizure.2020.06.014.

5. Hallman-Cooper JL, Rocha Cabrero F. Cerebral palsy. In: StatPearls. Treasure Island: StatPearls Publishing. PMID: https://pubmed.gov/30844174.

6. Verschuren O, Smorenburg ARP, Luiking Y, Bell K, Barber L, Peterson MD. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: A narrative review of the literature. The Journal of Cachexia, Sarcopenia and Muscle. 2018;9(3):453–464. DOI: https://doi.org/10.1002/jcsm.12287.

7. Howard JJ, Herzog W. Skeletal muscle in cerebral palsy: From belly to myofibril. Frontiers in Neurology. 2021;12:620852. DOI: https://doi.org/10.3389/fneur.2021.620852.

8. Howard JJ, Graham K, Shortland AP. Understanding skeletal muscle in cerebral palsy: А path to personalized medicine? Developmental Medicine & Child Neurology. 2022;64(3):289–295. DOI: https://doi.org/10.1111/dmcn.15018.

9. Konno RN, Nigam N, Wakeling JM, Ross SA. The contributions of extracellular matrix and sarcomere properties to passive muscle stiffness in cerebral palsy. Frontiers in Physiology. 2022;12:804188. DOI: https://doi.org/10.3389/fphys.2021.804188.

10. DэSouza A, Bolsterlee B, Lancaster A, Herbert RD. Intramuscular fat in children with unilateral cerebral palsy. Clinical Biomechanics. 2020;80:105183. DOI: https://doi.org/10.1016/j.clinbiomech.2020.105183.

11. Larkin-Kaiser KA, Howard JJ, Leonard T, Joumaa V, Gauthier L, Logan K, et al. Relationship of muscle morphology to hip displacement in cerebral palsy: a pilot study investigating changes intrinsic to the sarcomere. The Journal of Orthopaedic Surgery and Research. 2019;14(1):187. DOI: https://doi.org/10.1186/s13018-019-1239-1.

12. Walhain F, Desloovere K, Declerck M, Van Campenhout A, Bar-On L. Interventions and lower-limb macroscopic muscle morphology in children with spastic cerebral palsy: A scoping review. Developmental Medicine & Child Neurology. 2021;63(3):274–286. DOI: https://doi.org/10.1111/dmcn.14652.

13. Leonard TR, Howard JJ, Larkin-Kaiser K, Joumaa V, Logan K, Orlik B, et. al. Stiffness of hip adductor myofibrils is decreased in children with spastic cerebral palsy. The Journal of Biomechanics. 2019;87:100–106. DOI: https://doi.org/10.1016/j.jbiomech.2019.02.023.

14. Smith LR, Lee KS, Ward SR, Chambers HG, Lieber RL. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. The Journal of Physiology. 2011;589:2625–2639. DOI: https://doi.org/10.1113/jphysiol.2010.203364.

15. Popkov DA, Chibirov GM, Kozhevnikov VV, Gvozdev NS. Multilevel orthopaedic surgery in children with spastic cerebral palsy. Genij Ortopedii. 2021;27(4):475–480. (In Russ.). DOI: https://doi.org/10.18019/1028-4427-2021-27-4-475-480.

16. Dolganova TI, Gatamov OI, Chibirov GM, Dolganov DV, Popkov DA. Clinical and biomechanical results of multilevel orthopaedic interventions in crouch-gait patients. Genij Ortopedii. 2020;26(3):325–333. (In Russ.). DOI: https://doi.org/10.18019/1028-4427-2020-26-3-325-333.

17. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Developmental Medicine & Child Neurology. 1997;39(4):214–223. DOI: https://doi.org/10.1111/j.1469-8749.1997.tb07414.x.

18. Kovtun OP, Plaksina AN, Dugina EA. Consistency in assessing physical development of children with cerebral palsy according to regional and specialized centile scales: A population-based cross-sectional study. Current Pediatrics. 2018;17(3):223–228. (In Russ.). DOI: https://doi.org/10.15690/vsp.v17i3.1891.

19. Shalkevich LV. Cerebral palsy: Modern conception of classification systems. Meditsinskie Novosti. 2021;(1): 19–23. (In Russ.). EDN: https://elibrary.ru/PFHEGH.

20. Sellers D, Mandy A, Pennington L, Hankins M, Morris C. Development and reliability of a system to classify the eating and drinking ability of people with cerebral palsy. Developmental Medicine & Child Neurology. 2014;56(3):245–251. DOI: https://doi.org/10.1111/dmcn.12352.

21. González-Rozo N, Pérez-Molina JJ, Quiñones-Pacheco YB, Flores-Fong LE, Rea-Rosas A, Cabrales-deAnda JL. Factors associated with oropharyngeal dysphagia diagnosed by videofluoroscopy in children with cerebral palsy. Revista de Gastroenterología de México (English Edition). 2021;87(1):44–51. DOI: https://doi.org/10.1016/j.rgmxen.2020.09.004.

22. Pak LA, Makarova SG, Chumbadze TR, Fisenco AP. Disorders of the nutritional status and their correction in cerebral palsy children. Russian Pediatric Journal. 2019;22(1):23–27. (In Russ.). EDN: https://elibrary.ru/UXTUXK.

23. Evreinov VV, Zhirova TA. Nutritional status of children with severe forms of cerebral palsy undergoing surgical orthopedic treatment for spastic hip dislocation. Pediatrician (St. Petersburg). 2023;14(4):23–31. (In Russ.). DOI: https://doi.org/10.17816/PED14423-31.

24. Multani I, Manji J, Hastings-Ison T, Khot A, Graham K. Botulinum toxin in the management of children with cerebral palsy. Pediatric Drugs. 2019;21(4):261–281. DOI: https://doi.org/10.1007/s40272-019-00344-8.

25. Multani I, Manji J, Tang MJ, Herzog W, Howard JJ, Graham HK. Sarcopenia, cerebral palsy, and botulinum toxin type A. JBJS Reviews. 2019;7(8):e4. DOI: https://doi.org/10.2106/JBJS.RVW.18.00153.

26. Kostrominova TY. Skeletal muscle denervation: Past, present and future. International Journal of Molecular Sciences. 2022;23(14):7489. DOI: https://doi.org/10.3390/ijms23147489.

27. Yang X, Xue P, Chen H, Yuan M, Kang Y, Duscher D, et al. Denervation drives skeletal muscle atrophy and induces mitochondrial dysfunction, mitophagy and apoptosis via miR-142a-5p/MFN1 axis. Theranostics. 2020;10(3):1415–1432. DOI: https://doi.org/10.7150/thno.40857.

28. Shchudlo MM, Shchudlo NA, Filimonova GN, Stepanova GA. Structural reorganization of reinnervated skeletal muscle during low-frequency electrical stimulation. Genij Ortopedii. 2010;4:84–89. (In Russ.). EDN: https://elibrary.ru/NAVTNX.

29. Tupikov VA, Shamik VB, Tupikov MV. Pathomorphological changes skeletal muscles in children with cerebral paralysis. Astrakhanskiy meditsinskiy zhurnal. 2013;8(1):273–276. (In Russ.). EDN: https://elibrary.ru/QCYDQD.

30. Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: A clinical overview. Translational Pediatrics. 2020;9(1): S125–S135. DOI: https://doi.org/10.21037/tp.2020.01.01.

31. Huxley AF, Niedergerke R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954;173:971–973. DOI: https://doi.org/10.1038/173971a0.

32. Basoya S, Kumar S, Wanjari A. Cerebral palsy: A narrative review on childhood disorder. Cureus. 2023; 15(11):e49050. DOI: https://doi.org/10.7759/cureus.49050.


Supplementary files

Review

For citations:


Evreinov VV, Filimonova GN, Mezentsev IN, Zueva YV. Pathomorphological Changes in the Gracilis Muscle in Patients with Spastic Forms of Cerebral Palsy. Ural Medical Journal. 2025;24(4):19–30. (In Russ.) https://doi.org/10.52420/umj.24.4.19. EDN: CSHCTE

Views: 46


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)