Preview

Ural Medical Journal

Advanced search

Features of Molecular Interaction Between Lung Carcinoma and Tuberculosis In Vivo

https://doi.org/10.52420/umj.24.5.50

EDN: MOBCUF

Abstract

Introduction. The mechanisms of interaction between lung cancer and tuberculosis (TB) are not fully understood.

The aim of the study is to study the effect of pulmonary tuberculosis on the lung cancer.

Materials and methods. The study utilized a model (Patent RU 2800964 C1) of isolated Lewis lung carcinoma (LLC) and generalized TB (H37Rv and 5582 strains) in C57BL/6 mice. Five groups of laboratory animals were formed: isolated tuberculosis (different M. tuberculosis susceptibility), isolated LLC, and 2 groups with combined pathology. An immunohistochemical analysis for TNF-α, PCNA, and MMP-9 was completed.

Results. The relative expression of MMP-9 in the groups with combined pathology was significantly lower than in the isolated tumor group: LLC + H37Rv — 2.60; LLC + 5582–3.00; LLC — 8.90 (p = 0.043). The relative expression of TNF-α showed no statistically significant differences between the combined pathology groups and the isolated tumor group: LLC + H37Rv — 1.35; LLC + 5582–3.70; LLC — 1.70. A statistically significant increase in TNF-α expression was observed in mice infected with the drug-resistant M. tuberculosis strain (5582). The relative expression of PCNA was significantly lower in the combined pathology groups compared to the isolated tumor group: LLC + H37Rv — 8.50; LLC + 5582 — 14.30; LLC — 36.45 (p = 0.012).

Discussion. Data demonstrated that TB led to the suppression of tumor-induced MMP-9 expression, reduction in PCNA expression. This may indicate the suppression of metastasisе, cell proliferation. The TNF-α expression level didn`t differ significantly between the groups.

Conclusion. The obtained data may suggest an oncosuppressive effect of tuberculosis on the lung tumors.

About the Authors

G. M. Agafonov
Saint Petersburg State Research Institute of Phthisiopulmonology; Saint Petersburg State University
Russian Federation

Georgiy M. Agafonov — Thoracic Surgeon, Trainee-Researcher, Saint Petersburg State Research Institute of Phthisiopulmonology.

Saint Petersburg


Competing Interests:

None



G. G. Kudriashov
Saint Petersburg State Research Institute of Phthisiopulmonology
Russian Federation

Grigorii G. Kudriashov — Candidate of Sciences (Medicine), Leading Researcher, Head of the Department of Pulmonology and Thoracic Surgery, Saint Petersburg State Research Institute of Phthisiopulmonology.

Saint Petersburg


Competing Interests:

None



J. S. Krylova
Saint Petersburg State Research Institute of Phthisiopulmonology
Russian Federation

Julia S. Krylova — Candidate of Sciences (Medicine), Pathologist, Senior Researcher of the Center of Molecular Biomedicine, Saint Petersburg State Research Institute of Phthisiopulmonology.

Saint Petersburg


Competing Interests:

None



T. S. Zubareva
Saint Petersburg State Research Institute of Phthisiopulmonology
Russian Federation

Tatiana S. Zubareva — Candidate of Sciences (Biology), Senior Researcher of the Center of Molecular Biomedicine, Saint Petersburg State Research Institute of Phthisiopulmonology.

Saint Petersburg


Competing Interests:

None



I. M. Kvetnoy
Saint Petersburg State Research Institute of Phthisiopulmonology; Saint Petersburg State University
Russian Federation

Igor M. Kvetnoy — Doctor of Sciences (Medicine), Professor, Head of the Center of Molecular Biomedicine, Saint Petersburg State Research Institute of Phthisiopulmonology; Professor of the Department of Pathology, Institute of Medicine, Saint Petersburg State University.

Saint Petersburg


Competing Interests:

None



P. K. Yablonskiy
Saint Petersburg State Research Institute of Phthisiopulmonology; Saint Petersburg State University
Russian Federation

Piotr K. Yablonskii — Doctor of Sciences (Medicine), Professor, Director, Saint-Petersburg State Research Institute of Phthisiopulmonology; Head of the Department of Hospital Surgery, Institute of Medicine, Saint Petersburg State University.

Saint Petersburg


Competing Interests:

None



References

1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2024;74(3):229–263. DOI: https://doi.org/10.3322/caac.21834.

2. Kudriashov GG, Nefedov AO, Tochilnikov GV, Zmitrichenko YG, Krylova YS, Dogonadze MZ, et al. Original experimental model of tuberculosis and lung cancer. Pediatrician. 2022;13(5):33–42. DOI: https://doi.org/10.17816/PED13533-42.

3. Krylova YuS, Kudriashov GG, Tochilnikov GV, Vinogradova TI, Dokhov MA, Yablonskiy PK. Biological model of lung cancer combination and tuberculosis: Development for preclinical study of rational combinations of targeted antitumor and antituberculosis therapy. Molecular Medicine. 2024;22(2):23–28. (In Russ.). DOI: https://doi.org/10.29296/24999490-2024-02-04.

4. Zhou Y, Hu Z, Cao S, Yan B, Qian J, Zhong H. Concomitant Mycobacterium tuberculosis infection promotes lung tumor growth through enhancing Treg development. Oncology Reports. 2017;38(2):685–692. DOI: https://doi.org/10.3892/or.2017.5733.

5. Ziółkowska-Suchanek I, Żurawek M. FOXP3: A player of immunogenetic architecture in lung cancer. Genes. 2024;15(4):493. DOI: https://doi.org/10.3390/genes15040493.

6. Agafonov GM, Kudriashov GG, Krylova YuS, Zubareva TS, Kvetnoy IM, Yablonskiy PK. Lung cancer and pulmonary tuberculosis: Key features of molecular mechanisms of concomitant disease. Progress in Physiological Science. 2024;55(3):58–74. (In Russ.). DOI: https://doi.org/10.31857/S0301179824030045.

7. Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. International Journal of Molecular Sciences. 2022;23(1):146. DOI: https://doi.org/10.3390/ijms23010146.

8. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Frontiers in Oncology. 2019;9:01370. DOI: https://doi.org/10.3389/fonc.2019.01370.

9. Farina AR, Mackay AR. Gelatinase B/MMP-9 in tumour pathogenesis and progression. Cancers. 2014; 6(1):240–296. DOI: https://doi.org/10.3390/cancers6010240.

10. Cabral-Pacheco GA, Garza-Veloz I, Rosa CCD La, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. International Journal of Molecular Sciences. 2020;21(24):9739. DOI: https://doi.org/10.3390/ijms21249739.

11. Shao W, Wang W, Xiong XG, Cao C, Yan TD, Chen G, et al. Prognostic impact of MMP-2 and MMP-9 expression in pathologic stage IA non-small cell lung cancer. Journal of Surgical Oncology. 2011;104(7): 841–846. DOI: https://doi.org/10.1002/jso.22001.

12. Zhang Y, Wu JZ, Zhang JY, Xue J, Ma R, Cao HX, et al. Detection of circulating vascular endothelial growth factor and matrix metalloproteinase-9 in non-small cell lung cancer using Luminex multiplex technology. Oncology Letters. 2014;7(2):499–506. DOI: https://doi.org/10.3892/ol.2013.1718.

13. Esmedlyaeva DS, Alekseeva NP, Novitskaya TA, Dyakova MYe, Ariel IV, Grigoriev BM, et al. Inflammatory activity and markers of extracellular matrix destruction in pulmonary tuberculoma. Bulletin of Siberian Medicine. 2020;19(2):112–119. DOI: https://doi.org/10.20538/1682-0363-2020-2-112-119.

14. Elkington PT, Ugarte-Gil CA, Friedland JS. Matrix metalloproteinases in tuberculosis. European Respiratory Journal. 2011;38(2);456–464. DOI: https://doi.org/10.1183/09031936.00015411.

15. Ong CWM, Elkington PT, Friedland JS. Tuberculosis, pulmonary cavitation, and matrix metalloproteinases. American Journal of Respiratory and Critical Care Medicine. 2014;190(1):9–18. DOI: https://doi.org/10.1164/rccm.201311-2106PP.

16. Kumar NP, Moideen K, Nancy A, Viswanathan V, Thiruvengadam K, Sivakumar S, et al. Association of plasma matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase levels with adverse treatment outcomes among patients with pulmonary tuberculosis. JAMA Network Open. 2020;3(12):e2027754. DOI: https://doi.org/10.1001/jamanetworkopen.2020.27754.

17. Ordonez AA, Tasneen R, Pokkali S, Xu Z, Converse PJ, Klunk MH, et al. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. Disease Models and Mechanisms. 2016; 9(7):779–788. PMID: https://pubmed.gov/27482816.

18. Rohlwink UK, Walker NF, Ordonez AA, Li YJ, Tucker EW, Elkington PT, et al. Matrix metalloproteinases in pulmonary and central nervous system tuberculosis — a review. International Journal of Molecular Sciences. 2019;20(6):1350. DOI: https://doi.org/10.3390/ijms20061350.

19. Cao S, Li J, Lu J, Zhong R, Zhong H. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway. Cell Death & Disease. 2019;10(2):44. DOI: https://doi.org/10.1038/s41419-018-1237-y.

20. Voronina EV, Lobanova NV, Yakhin IR, Romanova NA, Seregin YA. Role of tumor necrosis factor alpha in immune pathogenesis of different diseases and its significance for evolving anticytokine therapy with monoclonal antibodies. Medical Immunology (Russia). 2018;20(6):797–806. (In Russ.) DOI: https://doi.org/10.15789/1563-0625-2018-6-797-806.

21. Liu W, Chen X, He Y, Tian Y, Xu L, Ma Y, et al. TNF-α inhibits xenograft tumor formation by A549 lung cancer cells in nude mice via the HIF-1α/VASP signaling pathway. Oncology Reports. 2019;41(4):2418–2430. DOI: https://doi.org/10.3892/or.2019.7026.

22. Benoot T, Piccioni E, De Ridder K, Goyvaerts C. TNFα and immune checkpoint inhibition: Friend or foe for lung cancer? International Journal of Molecular Sciences. 2021;22(16):8691. DOI: https://doi.org/10.3390/ijms22168691.

23. Mootoo A, Stylianou E, Arias MA, Reljic R. TNF-α in tuberculosis: A cytokine with a split personality. Inflammation & Allergy-Drug Targets. 2009;8(1):53–62. DOI: https://doi.org/10.2174/187152809787582543.

24. Yuk JM, Kim JK, Kim IS, Jo EK. TNF in human tuberculosis: A double-edged sword. Immune Network. 2024;24(1):e4. DOI: https://doi.org/10.4110/in.2024.24.e4.

25. Shang GS, Liu L, Qin YW. IL-6 and TNF-α promote metastasis of lung cancer by inducing epithelial-mesenchymal transition. Oncology Letters. 2017;13(6):4657–4660. DOI: https://doi.org/10.3892/ol.2017.6048.

26. Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Annals of Botany. 2011;107(7):1127–1140. DOI: https://doi.org/10.1093/aob/mcq243.

27. Peng B, Ortega J, Gu L, Chang Z, Li GM. Phosphorylation of proliferating cell nuclear antigen promotes cancer progression by activating the ATM/Akt/GSK3β/Snail signaling pathway. Journal of Biological Chemistry. 2019;294(17):7037–7045. DOI: https://doi.org/10.1074/jbc.RA119.007897.

28. Wang L, Kong W, Liu B, Zhang X. Proliferating cell nuclear antigen promotes cell proliferation and tumorigenesis by up-regulating STAT3 in non-small cell lung cancer. Biomedicine and Pharmacotherapy. 2018;104:595–602. DOI: https://doi.org/10.1016/j.biopha.2018.05.071.

29. Wu C, Zhu X, Xia L, Wang L, Yu W, Guo Q, et al. High expression of long noncoding RNA PCNA-AS1 promotes non-small-cell lung cancer cell proliferation and oncogenic activity via upregulating CCND1. Journal of Cancer. 2020;11(7):1959–1967. DOI: https://doi.org/10.7150/jca.39087.

30. Ye X, Ling B, Xu H, Li G, Zhao X, Xu J, et al. Clinical significance of high expression of proliferating cell nuclear antigen in non-small cell lung cancer. Medicine. 2020;99(16):e19755. DOI: https://doi.org/10.1097/MD.0000000000019755.

31. Chen X, Sun J, Wang Y. Expressions of CD44, PCNA and MRP1 in lung cancer tissues and their effects on proliferation and invasion abilities of lung cancer cell line 95D. Journal of BUON. 2021;26(1):72–78. PMID: https://pubmed.gov/33721434.

32. Fan J, Zhou X, Huang J, Wang X, Che G. Prognostic roles of PCNA expressions in non-small cell lung cancer: A meta-analysis. International Journal of Clinical and Experimental Medicine. 2016;9(3):5655–5665. Available from: https://clck.ru/3PuS8f (accessed: 19 June 2025).

33. Chai Q, Lu Z, Liu Z, Zhong Y, Zhang F, Qiu C, et al. Lung gene expression signatures suggest pathogenic links and molecular markers for pulmonary tuberculosis, adenocarcinoma and sarcoidosis. Communications Biology. 2020;3(1):604. DOI: https://doi.org/10.1038/s42003-020-01318-0.


Review

For citations:


Agafonov GM, Kudriashov GG, Krylova JS, Zubareva TS, Kvetnoy IM, Yablonskiy PK. Features of Molecular Interaction Between Lung Carcinoma and Tuberculosis In Vivo. Ural Medical Journal. 2025;24(5):50-63. (In Russ.) https://doi.org/10.52420/umj.24.5.50. EDN: MOBCUF

Views: 19


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)