Preview

Уральский медицинский журнал

Расширенный поиск

Наследственные нейродегенерации с накоплением железа в мозге (литературный обзор)

https://doi.org/10.25694/URMJ.2019.03.15

Аннотация

В данном литературном обзоре представлены современные представления о наследственных нейродегенерациях с накоплением железа в мозге - гетерегонной группе наследственных заболеваний, в основе которой лежит нарушение метаболизма железа и отложение его в различных структурах головного мозга с развитием патологических изменений. Описаны основные и наиболее часто встречающееся клинические формы, их этиопатогенетические и молекулярно-генетические аспекты, а также возможные варианты лечения.

Об авторах

Казбек Меджидович Аутлев
ФГБОУ ВО Тюменский Государственный Медицинский Университет
Россия


Евгений Викторович Кручинин
ФГБОУ ВО Тюменский Государственный Медицинский Университет
Россия


Максим Владиславович Козлов
ФГБОУ ВО Тюменский Государственный Медицинский Университет
Россия


Егор Алексеевич Мокин
ФГБОУ ВО Тюменский Государственный Медицинский Университет
Россия


Марсель Азатович Ахметьянов
ФГБОУ ВО Тюменский Государственный Медицинский Университет
Россия


Ровшан Ибиш Алекберов
ФГБОУ ВО Тюменский Государственный Медицинский Университет
Россия


Александр Владимирович Лукашенок
ФГБОУ ВО Тюменский Государственный Медицинский Университет
Россия


Меджид Казбекович Аутлев
ФГБОУ ВО Тюменский Государственный Медицинский Университет
Россия


Юлия Сергеевна Яниева
ФГБОУ ВО Тюменский Государственный Медицинский Университет
Россия


Список литературы

1. Salomäo RP, Pedroso JL, Gama MT. A diagnostic approach for neurodegeneration with brain iron accumulation: clinical features, genetics and brain imaging. Arq Neuropsiquiatr 2016; 7 (74): 587-96.

2. Tello C, Darling A, Lupo V. On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin Genet 2018; 4(93):7 31-740.

3. Zakharova EY, Rudenskaya GE. A new form ofhereditary neurodegeneration with brain iron accumulation: clinical and moleculargenetic characteristics. Zh Nevrol Psikhiatr Im S S Korsakova 2014; 1(114): 4-12.

4. Daglas M, Adlard PA. The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Front Neurosci. 2018;12:981.

5. Ke Y., Qian Z. M. Brain iron metabolism: neurobiology and neurochemistry. Prog. Neurobiol. 83: 149-173.

6. Ward R. J., Zucca F. A., Duyn J. H. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13: 1045-1060.

7. Torben M., Rosengren N. T., Skj0rringe T. Iron trafficking inside the brain. J. Neurochem. 2007; 103: 1730-1740.

8. Attieh Z. K., Mukhopadhyay C. K., Seshadri V Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J. Biol. Chem. 1999; 274: 1116-1123.

9. Rogers J., Bush A., Cho H.-H. Iron and the translation of the amyloid precursor protein (APP) and ferritin: riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem. Soc. Trans. 2008; 6 (36): 1282-1287.

10. A yton S., Zhang M., Roberts B. R. Ceruloplasmin and β-amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radic. Biol. Med. 2014; 69: 331-337.

11. Urrutia P. J., Mena N. P., Nunez M. T. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front. Pharmacol. 2014; 5: 38.

12. Barbosa J. H., Santos A. C., Tumas V. Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2. Magn. Reson. Imaging 2015; 33: 559-565.

13. Smith M. A., Harris P. L., Sayre L. M. Iron accumulation in Alzheimer disease is a source of redox-generatedfree radicals. Proc. Natl. Acad. Sci. U.S.A. 1997. 94: 9866-9868.

14. Wan W., Jin L., Wang Z. Iron deposition leads to neuronal a-synuclein pathology by inducing autophagy dysfunction. Front. Neurol. 2017; 8: 1.

15. Liu B., Moloney A., Meehan S. Iron promotes the toxicity of amyloid ß peptide by impeding its ordered aggregation. J. Biol. Chem. 2011; 286: 4248-4256.

16. Urrutia P. J., Mena N. P., Nunez M. T. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front. Pharmacol. 2014; 5: 38.

17. Saleppico S., Mazzolla R., Boelaert J. R. Iron regulates microglial cell-mediated secretory and effector functions. Cell. Immunol. 1996; 170: 251-259.

18. Hogarth P. Neurodegeneration with Brain Iron Accumulation: Diagnosis and Management. J Mov Disord. 2015; 8(1): 1-13

19. Nardocci N, Zorzi G. Axonal dystrophies. Handb Clin Neurol. 2013; 113:1919-24.

20. Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 2018; 147: 293-305.

21. Kurian MA, Hayflick SJ. Pantothenate kinase-associated neurodegeneration (PKAN) and PLA2G6-associated neurodegeneration (PLAN): review of two major neurodegeneration with brain iron accumulation (NBIA) phenotypes. Int Rev Neurobiol. 2013; 110: 49-71.

22. Hartig MB, Prokisch H, Meitinger T, Klopstock T. Pantothenate kinase-associated neurodegeneration. Curr Drug Targets. 2012; 13(9):1 182-9.

23. Ozes B, Karagoz N, Schüle R, et al. PLA2G6 mutations associated with a continuous clinical spectrum from neuroaxonal dystrophy to hereditary spastic paraplegia. Clin Genet. 2017; 92(5): 534-539.

24. Paisàn-Ruiz C, Li A, Schneider SA. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging. 2012; 33(4):814-23.

25. Kurian MA, McNeill A, Lin JP. Childhood disorders of neurodegeneration with brain iron accumulation (NBIA). Dev Med Child Neurol. 2011; 53(5): 394-404.26. The molecular biology of the group VIA Ca2+-independent phospholipase A2. Ma Z, Turk J. Prog Nucleic Acid Res Mol Biol. 2001; 67:1-33.

26. Shinzawa K, Sumi H, Ikawa M. Neuroaxonal dystrophy caused by group VIA phospholipase A2 deficiency in mice: a model of human neurodegenerative disease. J. Neurosci. 2008; 28(9): 2212-20.

27. Balsinde J, Balboa MA, Dennis EA. Antisense inhibition of group VI Ca2+-independent phospholipase A2 blocks phospholipid fatty acid remodeling in murine P388D1 macrophages. J Biol Chem. 1997; 272 (46): 29317-21.

28. Paisdn-Ruiz C., Bhatia K., Li A. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann. Neurol. 2009; 65: 19-23.

29. Lai H., Lin C., Wu R. Early-onset autosomal-recessive parkinsonian-pyramidal syndrome. Acta Neurol. Taiwan 2012; 21: 99-107.

30. Sina F., Shojaee S., Elahi E. R632W mutation in PLA2G6 segregates with dystonia-parkinsonism in a consanguineous Iranian family. Eur. J. Neurol. 2009; 16: 101-114.

31. Руденская Г.Е., Захарова Е. Ю. Наследственные нейродегенерации с накоплением железа в мозге. Анналы клинической и экспериментальной неврологии 2013; 4.

32. Gregory A., Westaway S., Holm I. Neurodegeneration associated with genetic defects in phospholipase. Neurology 2008; 71:1402-1409.

33. Nunez MT, Chana-Cuevas P. New Perspectives in Iron Chelation Therapy for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 2018; 11(4):109.

34. DusekP., Schneider S.A., Aaseth J. Iron chelation in the treatment of neurodegenerative diseases. J. Trace Elem. Med. Boil. 2016.

35. Daglas M, Adlard PA. The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Front Neurosci. 2018; 12: 981.

36. Kumar N, Rizek P, Jog M. Neuroferritinopathy: Pathophysiology, Presentation, Differential Diagnoses and Management. Tremor Other Hyperkinet Mov (N Y) 2016; 6: 355.

37. Curtis AR, Fey C, Morris CM. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease 200; 28(4): 350-4.

38. Levi S, Rovida E. Neuroferritinopathy: From ferritin structure modification to pathogenetic mechanism. Neurobiol Dis. 2015; 81: 34-43.

39. Levi S, Finazzi D. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol. 2014; 5:1-20.

40. Vidal R, Ghetti B, Takao M. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol. 2004; 63(4): 363-80.

41. Chinnery PF, Curtis ARJ, Fey C. Neuroferritinopathy in a French family with late onset dominant dystonia. J Med Genet. 2003; 40.

42. Mancuso M, Davidzon G, Kurlan RM. Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. Neuropathol Exp Neurol. 2005; 64(4): 280-94.

43. Storti E, Cortese F, Di Fabio R. De novo FTL mutation: a clinical, neuroimaging, and molecular study. Mov Disord. 2013; 28(2): 252-3.

44. Devos D, Tchofo PJ, Vuillaume I. Clinical features and natural history of neuroferritinopathy caused by the 458dup. A FTL mutation. Brain. 2009; 132: 2008-2010.

45. Ohta E, Nagasaka T, Shindo K. Neuroferritinopathy in a Japanese family with a duplication in the ferritin light chain gene. Neurology. 2008; 70:1493-1494.

46. Mir P, Edwards MJ, Curtis AR. Adult-onset generalized dystonia due to a mutation in the neuroferritinopathy gene. Mov Disord. 2005; 20(2): 243-5.

47. Maciel P, Cruz VT, Constante M. Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement. Neurology 2005; 65: 603-605.

48. Nishida K, Garringer HJ, Futamura N. A novel ferritin light chain mutation in neuroferritinopathy with an atypical presentation. J Neurol Sci. 2014; 342 (1-2): 173-7.

49. Keogh MJ, Aribisala BS, He J. Voxel-based analysis in neuroferritinopathy expands the phenotype and determines radiological correlates of disease severity. J Neurol. 2015; 262: 2232-40.

50. Batla A, Adams ME, Erro R. Cortical pencil lining in neuroferritinopathy: a diagnostic clue. Neurology 2015; 84:1816-1818.

51. Schneider SA, Dusek P, Hardy J. Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Curr Neuropharmacol. 2013; 11(1): 59-79.

52. Tschentscher A, Dekomien G, Ross S. Analysis of the C19orf12 and WDR45 genes in patients with neurodegeneration with brain iron accumulation. J Neurol. 2015;349 (1-2): 105-9.

53. Kleffner I, Wessling C, Gess B. Behr syndrome with homozygous C19ORF12 mutation. J Neurol Sci. 2015; 357(1-2): 115-8.

54. Hogarth P, Gregory A, Kruer MC. New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 2013; 80(3): 268-75.

55. Langwinska-Wosko E, Skowronska M, Kmiec T. Retinal and optic nerve abnormalities in neurodegeneration associated with mutations in C19orf12 (MPAN). J Neurol Sci. 2016; 370: 237-240.

56. Deutschländer A, Konno T, Ross OA. Mitochondrial membrane protein-associated neurodegeneration. Parkinsonism Relat Disord. 2017; 39:1-3.

57. DusekP, Skoloud^kD, Roth J. Mitochondrial membrane protein-associated neurodegeneration: a case report and literature review. Neurocase 2018; 24(3): 161-165.

58. Skowronska M, Walter U, Kmiec T. Transcranial sonography in mitochondrial membrane protein-associated neurodegeneration. Parkinsonism Relat Disord. 2013; 19(11): 1061-3.

59. Gregory A. Mitochondrial membrane protein-associated neurodegeneration. GeneReviews. University of Washington, Seattle 2014.

60. Riboldi GM, Anstett K, Jain R. Aceruloplasminemia and putaminal cavitation. Parkinsonism Relat Disord. 2018; 51:121-123.

61. Miyajima H. Aceruloplasminemia. Neuropathology 2015; 35(1): 83-90.

62. Kono S. Aceruloplasminemia: an update. Int Rev Neurobiol. 2013;110:125-51.

63. Vroegindeweij LHP, Langendonk JG, Langeveld M. New insights in the neurological phenotype of aceruloplasminemia in Caucasian patients. Parkinsonism Relat Disord. 2017; 36: 33-40.

64. Wiethoff S, Houlden H. Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 2017; 145:157-166.

65. Grisoli M, Piperno A, Chiapparini L. Imaging of Cerebral Cortical Involvement in Aceruloplasminemia. AJNR Am J Neuroradiol. 2005; 26(3): 657-61.

66. Miyajima H., Hosoi Y. Aceruloplasminemia. GeneReviews. University of Washington, Seattle 2018.

67. Piperno A, Alessio M. Aceruloplasminemia: Waiting for an Efficient Therapy. Front Neurosci. 2018; 4(12): 903.

68. Schneider S., Bhatia K. Dystonia in the Woodhouse - Sakati syndrome: A new family and literature review. Mov. Disord. 2008; 23: 592-596.

69. Zorzi G., Zibordi F., Chapparini L., Nardocci N. Therapeutic advances in neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 2012; 19: 82-86.


Рецензия

Для цитирования:


Аутлев КМ, Кручинин ЕВ, Козлов МВ, Мокин ЕА, Ахметьянов МА, Алекберов РИ, Лукашенок АВ, Аутлев МК, Яниева ЮС. Наследственные нейродегенерации с накоплением железа в мозге (литературный обзор). Уральский медицинский журнал. 2019;(3):9-16. https://doi.org/10.25694/URMJ.2019.03.15

For citation:


Autlev KM, Kruchinin EV, Kozlov MV, Mokin EA, Akhmetianov MA, Alekberov RI, Lukashenok AV, Autlev MK, Yanieva YS. Hereditary neurodegeneration with iron accumulation in the brain (literature review). Ural Medical Journal. 2019;(3):9-16. (In Russ.) https://doi.org/10.25694/URMJ.2019.03.15

Просмотров: 179


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)