Target effects of cytikoline on key elements of nervous tissue damage process
https://doi.org/10.25694/URMJ.2018.04.131
Abstract
About the Authors
M. S. KhlestkinaRussian Federation
G. Z. Sufianova
Russian Federation
A. G. Shapkin
Russian Federation
A. A. Sufianov
Russian Federation
References
1. Scheinberg P. The biologic basis for the treatment of acute stroke. Neurology 1991; 41: 1867-73.
2. Суфианова Г.З., Шапкин А.Г. Повреждение нервной ткани: механизмы, модели, методы оценки. М: Издательство РАМН; 2014.
3. Candelario-Jalil E.Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs. 2009;10(7):644-54.
4. Cansev M., Wurtman R.J., Sakamoto T., Ulus I.H. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses. Alzheimers Dement. 2008;4(1, Suppl 1):S153-68.
5. Morton C.C., Aitchison A.J., Gehrig K., Ridgway N.D. A mechanism for suppression of the CDP-choline pathway during apoptosis. J Lipid Res. 2013; 54(12):3373-84
6. Grieb P. Neuroprotective properties of citicoline: facts, doubts and unresolved issues. CNS Drugs. 2014; 28(3): 185-93.
7. Borbely A. A., Tobler I. Endogenous sleep-promoting substances and sleep regulation. Physiol Rev.1989; 69(2): 605-70.
8. Zaleska M.M., Mercado M.L., Chavez J., Feuerstein G.Z., Pangalos M.N., Wood A. The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology. 2009;56(2):329-41.
9. Kennedy E.P., Weiss S.B. The function of cytidine coenzymes in the biosynthesis of phospholipids. J Biol Chem. 1956; 222(1):193-214.
10. Li Z., Vance D.E. Phosphatidylcholine and choline homeostasis. J Lipid Res. 2008;49(6):1187-94.
11. Шавловская О.А. Нейропротективная терапия неврологического дефицита при цереброваскулярной патологии. Практикующий врач сегодня. 2012; 3: 39-44.
12. Rose J. B., Coe I. R. Physiology of nucleoside transporters: back to the future. Physiology (Bethesda). 2008 Feb;23:41-8.
13. King A. E., Ackley M. A., Cass C. E., Young J. D., Baldwin S. A. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci. 2006; 27(8): 416-25.
14. Cansev M. Uridine and cytidine in the brain: their transport and utilization.Brain Res Rev. 2006;52(2):389-97.
15. Zhang J., Smith K.M., Tackaberry T. et al. Uridine binding and transportability determinants of human concentrative nucleoside transporters. Mol Pharmacol. 2005;68(3):830-9.
16. Guillen-Gomez E., Calbet M., Casado J., de Lecea L., Soriano E., Pastor-Anglada M., Burgaya F. Distribution of CNT2 and ENT1 transcripts in rat brain: selective decrease of CNT2 mRNA in the cerebral cortex of sleep-deprived rats. Neurochem. 2004; 90(4): 883-93.
17. Nagai K., Nagasawa K., Fujimoto S.Transport mechanisms for adenosine and uridine in primary-cultured rat cortical neurons and astrocytes. Biochem Biophys Res Commun. 2005;334(4):1343-50.
18. Genchev D. D., Mandel P. CTP synthetase activity in neonatal and adult rat brain. Neurochem. 1974; 22(6):1027-30.
19. Traut T. W. Physiological concentrations of purines and pyrimidines. Mol CellBiochem. 1994;140(1):1-22.
20. Dobolyi A., Juhasz G., Kovacs Z., Kardos J. Uridine function in the central nervous system. Curr Top Med Chem. 2011; 11(8): 1058-67.
21. Каркищенко Н.Н., Страдомский Б.В. Психофармакологические свойства эндогенных пиримидиновых нуклеозидов. Хим. фарм. журнал. 1991; 25: 4-6.
22. Connolly G.P. Abnormal pyrimidine metabolism is the basis of some neurological diseases.Trends Pharmacol Sci. 1998 Jul;19(7):252.
23. Cotroneo A.M., Castagna A., Putignano S. et al. Effectiveness and safety of citicoline in mild vascular cognitive impairment: the IDEALE study. Clin Interv Aging. 2013; 8:131-7.
24. Мушба А.В., Иванова Д.С., Виноградов О.И. Влияние цитиколина на эффективность восстановительных мероприятий у больных с ишемическим инсультом. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;116(2):71-75.
25. Diederich K., Frauenknecht K., Minnerup J. et al. Citicoline enhances neuroregenerative processes after experimental stroke in rats. Stroke. 2012; 43(7): 1931-
26. Ulus I.H., Wurtman R.J., Mauron C., Blusztajn J.K. Choline increases acetylcholine release and protects against the stimulation-induced decrease in phosphatide levels within membranes of rat corpus striatum. Brain Res. 1989;484(1-2):217-27.
27. Krupinski J., Abudawood M., Matou-Nasri S. et al. Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1. Vasc Cell. 2012;4(1):20.
28. Hurtado O., Cardenas A., Pradillo J.M. et al. A chronic treatment with CDP-choline improvesfunctional recovery and increases neuronal plasticity after experimental stroke. Neurobiol. Dis. 2007; 26(1): 105-11.
29. Gutierrez-Fernandez M., Rodriguez-Frutos B., Fuentes B. et al. CDP-choline treatment induces brain plasticity markers expression in experimental animal stroke. Neurochem Int. 2012; 60(3): 310-7.
30. membraneassociated phospholipase A2 by CDP-choline. Jpn Pharmacol Ther 1985; 13:159-64.
31. Plataras C., Taskiris S., Angelogianni P. Effect of CDPcholine on brain acetylcholinesterase and Na+/ K+-ATPase in adult rats. Clin Biochem. 2000; 33(5):351-7.
32. Giralt D, Garcia-Bonilla L, Campos M, Sosti V, Rosell A, Montaner J. Selecting the optimal dose of citicoline treatment in animal models of focal cerebral ischaemia through a meta-analysis. Cerebrovasc Dis. 2010; 29:
33. Cansev M., Ilcol Y.O., Yilmaz M.S., Hamurtekin E., Ulus I.H. Peripheral administration of CDP-choline, phosphocholine or choline increases plasma adrenaline and noradrenaline concentrations.Auton Autacoid Pharmacol. 2008 Jan;28(1):41-58.
34. Martinet M., Fonlupt P., Pacheco H. Activation of soluble striatal tyrosine hydroxylase in the rat brain after CDPcholine administration. Biochem Pharmacol. 1981; 30(5): 539-41.
35. Alvarez X.A., Sampedro C., Lozano R., Cacabelos R. Citicoline protects hippocampal neurons against apoptosis induced by brain betaamyloid deposits plus cerebral hypoperfusion in rats. Methods Find Exp Clin Pharmacol. 1999;21(8):535-40.
36. Lee H.J., Kang J.S., Kim Y.I. Citicoline protects against cognitive impairment in a rat model of chronic cerebral hypoperfusion. J Clin Neurol. 2009;5(1):33-8.
37. Mir C., Clotet J., Aledo R. CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci. 2003; 20(1): 53-60.
38. Hamurtekin E., Bagdas D., Gurun M.S. Possible involvement of supraspinal opioid and GABA receptors in CDPcholine-induced antinociception in acute pain models in rats. Neurosci Lett. 2007; 420(2):116-21.
39. Piccoli F., Camarda R., Bonavita V. The brain nucleotide pattern of the rat after injection of uracil, uridine and uridine phosphate. Acta Neurol (Napoli). 1971 Jan-Feb;26(1):109-17.
40. Inoue S. Sleep and sleep substances. Brain Dev.1986; 8(4): 469-73.
Review
For citations:
Khlestkina MS, Sufianova GZ, Shapkin AG, Sufianov AA. Target effects of cytikoline on key elements of nervous tissue damage process. Ural Medical Journal. 2018;(7):89-92. (In Russ.) https://doi.org/10.25694/URMJ.2018.04.131