Preview

Уральский медицинский журнал

Расширенный поиск

Исследование эффективности применения воды, пересыщенной воздухом, для снижения тяжести последствий окислительного стресса у лабораторных животных. I. Влияние воды, пересыщенной воздухом, на биоэлектрическую подвижность изолированных клеток

https://doi.org/10.25694/URMJ.2018.10.37

Аннотация

Объектами исследования являлись эритроциты и эпителиоциты буккального эпителия человека. Исследовались гемолиз эритроцитов и микроэлектрофоретическая подвижность клеток в артезианской воде, пересыщенной азотом, кислородом, аргоном, углекислым газом и кислородом. Экспериментально установлено, что вода с нанопузырьковой газовой фазой оказывает цитопротекторное и мембранорезистентное действие в условиях осмотического и токсического воздействия как на эритроциты, так и эпителиальные клетки щечного эпителия, оказывая одновременно активирующее действие на клетку, ее компартменты (ядро) и плазмолемму. Интенсивность клеточного ответа зависит от природы газа нанопузырьковой фазы: нанопузырьковая фаза Ar активирует клетки в меньшей степени, чем фаза воздуха и О2. Эта зависимость коррелирует с растворимостью газов. Активность обусловлена также длительностью обработки воды.

Об авторах

Н. Н. Чучкова
ФГБОУ ВО «Ижевская государственная медицинская академия» Минздрава России
Россия


А. А. Соловьев
ФГБОУ ВО «Ижевская государственная медицинская академия» Минздрава России
Россия


О. М. Канунникова
ФГБУН Удмуртский федеральный исследовательский центр Уральского отделения РАН
Россия


В. В. Аксенова
ФГБУН Удмуртский федеральный исследовательский центр Уральского отделения РАН
Россия


В. И. Кожевников
ФГБУН Удмуртский федеральный исследовательский центр Уральского отделения РАН
Россия


Список литературы

1. Lee H.J., Kang M.H. Effect of the magnetized water supplementation on blood glucose, lymphocyte DNA damage, antioxidant status, and lipid profiles in STZ-induced rats. Nutr Res Pract. 2013; 7(1): 34 - 42.

2. Hafizi L., Gholizadeh M., Karimi M., Hosseini G., Mostafavi-Toroghi H., Haddadi M. et al. Effects of magnetized water on ovary, preimplantation stage endometrial and fallopian tube epithelial cells in mice. Iran J Reprod Med. 2014; 12(4): 243 - 8.

3. Hayakumo S., Arakawa S., Takahashi M., Kondo K., Mano Y., Izumi Y. Effects of ozone nano - bubble water on periodontopathic bacteria and oral cellsin vitro studies. Sci Technol Adv Mater. 2014; 15(5): 055003. eCollection 2014.

4. Kugino K., Tamaru S., Hisatomi Y., Sakaguchi T. Long-duration carbon dioxide anesthesia of fish using ultra-fine (nano-scale) bubbles. PLoS One. 2016; 11(4): e0153542.

5. Шаталов В.М. Дегазация биожидкостей как механизм биологического действия слабых электромагнитных полей. Бiофiзичний вiсник. 2009; 23 (2): 92 - 99.

6. Ashutosh Agarwal, Wun Jern Ng, Yu Liu. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere. 2011; 84: 1175 - 1180.

7. Oshita S., Liu S. Nanobubbles characteristics and its application to agriculture and foods. International Symposium on Agri-Foods for Health and Wealth. 2013: 23 - 32.

8. Hirose Y., Yasui T., Taguchi K., Fujii Y., Niimi K., Hamamoto S. et al. Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney. Urolithiasis. 2013; 41(4): 279 - 94.

9. Никитин Е.Н., Соловьев А.А., Кутявина С.В., Голендухин А.Н. Способ микроэлектрофореза клеток крови и эпителиоцитов и устройство для его осуществления. Патент РФ № 2168176, 2001.

10. Намиот А.Ю. Растворимость газов в воде. Справочное пособие. Издание Недра, Москва; 1991.

11. Schliess F., Häussinger D. Call volume and insulin signaling. Int Rev Cytol. 2003; 225: 187 - 228.

12. Othman E.M., Leyh A., Stopper H. Insulin mediated DNA damage in mammalian colon cells and human lymphocytes in vitro. Mutat Res. 2013; 745 - 746: 34 - 39.

13. Макишева Р.Т. Инсулин и клеточная смерть. Вестник новых медицинских технологий. Электронное издание. 2015; 2: Публикация 2 - 4.

14. Макишева Р.Т. Повреждение клеток при сахарном диабете вызвано избыточным действием инсулина. Вестник новых медицинских технологий. Электронное издание. 2016; 1: Публикация 2 - 4.

15. Schliess F., Häussinger D. Cell hydration and insulin signaling. Cell Physiol Biochem. 2000; 10(5 - 6): 403 - 8.

16. Kitagawa Y., Liu C, Ding X. The influence of natural mineral water on aquaporin water permeability and human natural killer cell activity. Biochem Biophys Res Commun. 2011; 409(1): 40 - 45.

17. Nielsen S., King L.S., Christensen B.M., Agre P. Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. Am J Physiol.1997; 273: 1549 - 1561.

18. Matsuzaki T., Suzuki T., Koyama H., Tanaka S., Takata K. Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J Histochem Cytochem. 1999; 47(10): 1275 - 1286.

19. Hirano Y., Okimoto N., Kadohira I., Suematsu M., Yasuoka K., Yasui M. Molecular mechanisms of how mercury inhibits water permeation through aquaporin-1: understanding by molecular dynamics simulation. Biophys J. 2010; 98(8): 1512 - 1519.

20. Verkman A.S., Hara-Chikuma M., Papadopoulos M.C. Aquaporins-new players in cancer biology. J Mol Med. 2008; 86(5): 523 - 529.

21. Papadopoulos M., Verkman A. Potential utility of aquaporin modulators for therapy of brain disorders. Prog. Brain Res. 2008; 170: 589 - 601.

22. Титовец Э.П. Аквапорины человека и животных: фундаментальные и клинические аспекты. Минск: Белорус.наука, 2007.

23. Першин С.М. Влияние квантовых отличий орто- и пара-спин-изомеров H2O на свойства воды: биофизический аспект. Биофизика. 2013; 58(5): 910 - 918.

24. Першин С.М. Орто/пара конверсия Н2О в воде и скачок «текучести» эритроцитов через микрокапилляр при температуре 36.6±0.30С. Сб. трудов V Международного конгресса «Слабые и сверхслабые поля и излучения в биологии и медицине». 2009. Available at www.biophys.ru/archive/congress2009/pro-p87.

25. Tikhonov V.I., Volkov A.A. Separation of water into its ortho and para isomers. Science. 2002; 296: 2363.

26. Bunkin А.F., Pershin S.M., Nurmatov A.A. Four-photon spectroscopy of ortho/para spin-isomer H2O molecule in liquid water in sub-millimeter range. Laser Phys Lett. 2006; 3(6): 275.

27. Бункин А.Ф., Першин С.М. Четырехфотонная лазерная спектроскопия молекул в гидратных слоях биополимеров и наночастиц в микроволновом диапазоне частот Квантовая электроника. 2009; 39(7): 648 - 652.

28. Салихов К.М. 10 лекций по спиновой химии. Казань: УНИПРЕСС, 2000.

29. Wang H., Hao X., Zhang L., Liu S., Wang Q., Liu N. Et al. Decreased expression of aquaporin - 1 in lung tissue of silicotic rats. Clin. Lab. 2015; 61(9): 1163 - 1169.

30. Stiebel-Kalish H., Eyal S., Steiner I. The role of aquaporin-1 in idiopathic and drug - induced intracranial hypertension. Med Hypotheses. 2013; 81(6): 1059 - 1062.

31. Vassiliou A.G., Maniatis N.A., Orfanos S.E., Mastora Z., Jahaj E., Paparountas T et al. Induced expression and functional effects of aquaporin - 1 in human leukocytes in sepsis. Crit Care. 2013; 17(5): R199.


Рецензия

Для цитирования:


Чучкова НН, Соловьев АА, Канунникова ОМ, Аксенова ВВ, Кожевников ВИ. Исследование эффективности применения воды, пересыщенной воздухом, для снижения тяжести последствий окислительного стресса у лабораторных животных. I. Влияние воды, пересыщенной воздухом, на биоэлектрическую подвижность изолированных клеток. Уральский медицинский журнал. 2018;(10):155-161. https://doi.org/10.25694/URMJ.2018.10.37

For citation:


Chuchkova NN, Solovyev AA, Kanunnikova OM, Aksenova VV, Kozhevnikov VI. Effect of use of water, supersaturated with air, to reduce the severity of the cvonsequence of laboratory animals oxidative stress. I. The influence of water, supersaturated with air, on the bioelectrical mobility of the isolated cells. Ural Medical Journal. 2018;(10):155-161. (In Russ.) https://doi.org/10.25694/URMJ.2018.10.37

Просмотров: 123


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)