Preview

Ural Medical Journal

Advanced search

Study of acute oral toxicity of organotin compounds containing a 2,6-di-tert-butylphenol fragment

https://doi.org/10.52420/2071-5943-2021-20-3-73-77

Abstract

The aim of the study was to evaluate the safety of the use of organotin compounds containing a fragment of 2,6-di-tert-butylphenol as pharmaceutical substances when administered intragastrically to Wistar outbred rats (females). Material and methods. The objects of the study were three organotin compounds: ((3,5-di-tertbutyl-4-hydroxyphenylthiolate) triphenyltin (Me-5), (3,5-di-tert-butyl-4-hydroxyphenylthiolate)trimethyltin (Me-4), bis(3,5-di-tert-butyl-4-hydroxyphenylthiolate) dimethyltin (Me-3). Acute toxicity study were performed on 106 Wistar rats (female) weighing 190-210 g by "fixed dose" and "up and down" methods according to the OECD protocols. Results. According to the harmonized system of hazard classification and labeling of chemical products (GHS) the studied organotin compounds should be assigned to the following toxicity classes: Me-5 — IV, Me-3 — V, Me-4 — II. Average lethal dose in intragastric administration for Me-5 is LD50 = 955.0 ± 58.3 mg/kg, the value of LD50 for Me-3 is conventionally assumed to be much more than 2000 mg/kg, for Me-4 is in the range of 5 to 50 mg/kg. Discussion. The modification of tin-organic molecules in the course of directed synthesis opens broad prospects for the creation of a new class of anticancer drugs. In the course of the experimental study, the regularities of the "structure-toxicity" relationship of organic tin derivatives were revealed: the introduction of the 2,6-di-tert-butylphenol group significantly reduces toxicity compared to the corresponding initial substances; methyl derivatives are more toxic than their phenyl analogues. Compounds of GHS toxicity classes IV and V can be considered as leading candidates for promising preclinical studies in the field of experimental oncology. Conclusion. Substances of Me-3 and Me-5, which have the highest safety for intragastric use, were recommended for further study as antitumor drug agents.

About the Authors

M. A. Dodokhova
Rostov State Medical University
Russian Federation

Margarita A. Dodokhova, MD, Associate Professor

Rostov-on-Don



A. V. Safronenko
Rostov State Medical University
Russian Federation

Аndrey V.Safronenko, PhD, Professor

Rostov-on-Don



I. M. Kotieva
Rostov State Medical University
Russian Federation

Inga M. Kotieva, PhD, Professor

Rostov-on-Don



E. F. Komarova
Rostov State Medical University
Russian Federation

Ekaterina F. Komarova, Ph.D. in biology

Rostov-on-Don



V. G. Trepel
Branch of Informational and methodological center of expertise, accounting and analysis of medical products circulation
Russian Federation

Vartan G. Trepel, MD

Rostov-on-Don



M. S. Alkhuseyn-Kulyaginova
Rostov State Medical University
Russian Federation

Margarita S. Alkhuseyn-Kulyaginova

Rostov-on-Don



D. B. Shpakovskiy
M. V. Lomonosov Moscow State University
Russian Federation

Dmitrij B. Shpakovskiy, Candidate of Chemical Sciences

Moscow



E. R. Milaeva
M. V. Lomonosov Moscow State University
Russian Federation

Elena R. Milaeva, Ph.D. in chemistry, Professor

Moscow



References

1. Anti-cancer activity of di- and tri-organotin(IV) compounds with D-(+)-Galacturonic acid on human tumor cells / A. Attanzio, M. Ippolito, M. A. Girasolo [et al.] // Inorg Biochem. – 2018. – Vol. 188. – Р. 102-112. – Doi: 10.1016/j.jinorgbio.2018.04.006.

2. Structure-activity relationships of new Organotin(IV) anticancer agents and their cytotoxicity profile on HL-60, MCF-7 and HeLa human cancer cell lines / H. Ullah, V. Previtali, H. B. Mihigo [et al.] // Eur J Med Chem. – 2019. – Vol. 181. – Р. 111544. – Doi: 10.1016/j.ejmech.2019.07.047.

3. Cytotoxic Activity of Organotin(IV) Derivatives with Triazolopyrimidine Containing Exocyclic Oxygen Atoms / A. Attanzio, S. D'Agostino, R. Busà [et al.] // Molecules. – 2020. – Vol. 25 (4). – Р. E859. – Doi: 10,3390/молекулы25040859.

4. Gielen, M. Organotin Compounds: From Kinetics to Stereochemistry and Antitumour Activities / M. Gielen, M. Biesemans, R. Willem // Appl Organomet Chem. – 2005. – Vol. 19 (4). – Р. 440-450. – Doi: 10.1002/aoc.771.

5. Tin Chemistry Fundamentals, Frontiers, and Applications / A. G. Davies, M. Gielen, K. H. Pannell, E. R. T. Tiekink // Wiley. – 2008. – 752 p.

6. Anti-proliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives / C. N. Banti, S. K. Hadjikakou, T. Sismanoglu, N. Hadjiliadis // J Inorg Biochem. – 2019. – Vol. 194. – Р. 114-152. – Doi: 10.1016/j.jinorgbio.2019.02.003.

7. Antioxidative vs cytotoxic activities of organotin complexes bearing 2,6-di-tert-butylphenol moieties / T. A. Antonenko, D. B. Shpakovsky, M. A. Vorobyov [et al.] // Appl Organomet Chem. – 2018. – Vol. 32 (7). – Р. e4381. – Doi:10.1002/aoc.4381.

8. Synthesis, antiradical activity and in vitro cytotoxicity of novel organotin complexes based on 2,6-di-tert-butyl-4-mercaptophenol / D. B. Shpakovsky, C. N. Banti, E. M. Mukhatova [et al.] // Dalton Trans. – 2014. – Vol. 43 (18). – Р. 6880-90. – Doi: 10.1039/c3dt53469c.

9. Some insight into the mode of cytotoxic action of organotin compounds with protective 2,6-di-tert-butylphenol fragments / E. R. Milaeva, D. B. Shpakovsky, Y. A. Gracheva [et al.] // J Organomet Chem. – 2015. – Vol. 782. – Р. 96-102. – Doi:10.1016/j.jorganchem.2014.12.013.

10. Milaeva, E. R. Hybrid metal complexes with opposed biological modes of action – promising selective drug candidates / E. R. Milaeva, V. Yu. Tyurin // Pure and Applied Chemistry. – 2017. – Vol. 89 (8). – Р. 1065-1088. – Doi:10.1515/pac-2016-1130.

11. Novel selective anticancer agents based on Sn and Au complexes. Mini-review / E. R. Milaeva, D. B. Shpakovsky, Yu A. Gracheva [et al.] // Pure and Applied Chemistry. – 2020. – Vol. 92 (8). – Р. 1201-1216. – Doi: 10.1515/pac-2019-1209.

12. Protective effect of meso-tetrakis-(3,5-di-tert-butyl-4-hydroxyphenyl) porphyrin on the in vivo impact of trimethyltin chloride on the antioxidative defense system / E. R. Milaeva, V. Yu. Tyurin, Y. A. Gracheva [et al.] // Bioinorg Chem Appl. – 2006. – Vol. 2006. – Р. 64927. – Doi: 10.1155/BCA/2006/64927.

13. OECD Guideline for testing of chemicals. Acute Oral Toxicity -Fixed Dose Procedure No. 420. OECD Publishing, Paris, 2001.

14. OECD, Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure. OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, 2008. – Doi:10.1787/9789264071049-en.

15. Prozorovskiy, V. B. Practical guide for the accelerated determination of the average effective doses and concentrations of biologically active substances / Obshchestvo dukhovnoy i psikhicheskoy kul'tury. – Baykal'sk, 1994. – 46 (in Russ.).

16. Shiryaev, V. I. Organotin compounds as insectoacaricides / Agrokhimiya. – 2010. – № 3. – Р. 83-94 (in Russ.)


Review

For citations:


Dodokhova MA, Safronenko AV, Kotieva IM, Komarova EF, Trepel VG, Alkhuseyn-Kulyaginova MS, Shpakovskiy DB, Milaeva ER. Study of acute oral toxicity of organotin compounds containing a 2,6-di-tert-butylphenol fragment. Ural Medical Journal. 2021;20(3):73-77. (In Russ.) https://doi.org/10.52420/2071-5943-2021-20-3-73-77

Views: 352


ISSN 2071-5943 (Print)
ISSN 2949-4389 (Online)